INMCINEWS

Issue'

September 1980
-~ January 1981

*B8IGGEST YET" ISSUE
c/o Dakfield Comner, Sycamore Road, Amersham, Bucks. HP8 85U

CONTENTS

Page 1 This is 1t.
Page 2 Chairman’s Letter.
Page 4 Letters to the Editor.
Page 12 PASCAL Special Interest Group.
Page 13 Digks and the Nascom.
Page 16 Hardware Review.

Screen Control Unit.
Page 17 Doctor Dark’s Diary - 7.
Page 21 New Programs and Back Issues.
Page 22 Adding extra keys to an Nl.

Correction to I/0 Beard Review.

Page 24 BASIC Holiday.
Page 25 Classified Ads.
Page 26 Teach Yourself Z80 - Part 2.
Page 31 Free Progs.

Asgsembler - LOAD and TARB.
Page 34 BASIC - Calender.
Page 36 Nascom RAM with Schizophrenia.
Page 37 Protecting Program Variables.
Page 40 Software Reviews.

Integer PASCAL.
Page 42 DATRON PASCAL.
Page 43 MAPP 1-4Z.
Page 44 Parkinson BASIC Toolkit.
Page 45 IMPERSONAL Column.
Page 46 Book Reviews.

"Practical Microcomputer Programming"
Page 47 "zZ80 and 8080 Assembly Language"
Page 48 Software Review.

Two BASIC Toolkits.
Page 49 *PRINT USING’ Routine.
Page 52 Software Review.

Watkins BASIC Toolkit.
Page 54 INMC80 Subscription Form.
Page 56 Free Programs.

Machine Code - SIMP.
Page 57 Machine Code - SPACE INVADERS.

Pages 53/54/55 Advertisements.

PLEASE NOTE. INMC80‘s Amersham address 1s used by INMC80 purely as a postbox. It is
not possible for personal or telephone callers to obtain any INMCB80 services.

PLEASE ALSO NOTE. INMC80 is run by a voluntary committee on a part-time basis, and it
is mnot possible for us to bhecome involved in technical correspondence. Please contact
your NASCOM distributor for this.

HIM again
Chairmans” bit

WE ARE BACK [!!! My apologies on behalf of the committee for the wvery late
arrival of this issue. The last issue came out before we all went on holiday, and now
I’m sitting typing this looking at snow gently falling past the living room window.
Either there 1is something radically wrong with the weather, or the intervening
interval between typing this chairmans’ letter and the last is a lot longer than it
feels. Truth to tell, Paul and I have been extremely busy to the exclusion of
virtually anything else. Admittedly we work for different companies but it seems our
respective employers have both conspired against us getting this newsletter to press.
Mest of the copy for the October/November issue was in hand before the end of
September and that was where everything stopped. We picked up the pieces a couple of
days ago, and we have set the final copy date for tommorrow. I don’t know what page
count Paul has hidden on tapes and disks, but we intend this to be the biggest lssue
yet.

The first thing to notice is the the change of print style. Tc date most INMC
newsletters have been prepared on WASPEN and then printed using a rather arthritic IBM
printer. Progress has struck. We now have access to a Qume Sprint. This has not only
meant that the printing process has been speeded by about three times, but that we can
cram a8 lot more print per page. Our old page format of 72 characters per line, 56
lines per page has given way to 87 characters per line by 60 lines per page. This
should help reduce our printing bills a little by using less paper.

For once 1 can not complaln about lack of material for publication, we seen to
be awash with it. There must be enough for this issue and most of the next already.
Our thanks to all those who have contributed, even if we have not printed it in this
issue. However, can I make an appeal for a Nascom ownet somewhere near North London
who has a Nascom 2 fitted with NASPEN and could put in a few hours transcribing
letters, articles etc, prior to editing as typing time is now becoming our biggest
stumbling block. Whilst asking for help, would a capable technical draughtsman please
stand up and be ddentified. As you may have noticed we don’t go overhboard with
illustrations or technical drawings. This is because none of us can draw. We have a
number of hardware articles which we would like to publish, but our printer complains
that he can”t make litho plates from drawings on the backs of envelopes. Both jobs
would only take a few hours every couple of months, and the reward is to see your
efforts in print. Please reply to Amersham, for my attention.

Dodos are not extinct

Thank you all out there who replied to our ‘Prove a Dodo Exists’ appeal in the
last newsletter. May I thank particularly those I haven’t had time to write to yet. Up
until a few days ago we had identified our ideal dodo, but alas, extinction struck,
and the hunt starts again (more about that later). Just as well I kept all the letters
of application. One way and another we have managed to meet many prospective dodos, a
few were even clever enough to ferret out an unofficial INMC committee meeting in the
bar at the Cunard Hotel at a computer exhibition. We had decided that these budding
*Sherlocks’ were vreally too clever to be dodos, as they had the whit to find and
identify us. But as the dodo hunt is on again, who knows?

If you have been watching your magazine adverts, you will have noticed that a
group of Nascom dealers have clubbed together to promote Nascom related products. More
strength to their elbows, as this is one way in which lesser known products for Nascom
will see the light of day. It is really most encouraging to see this kind of movement,
as with the future of Nascom still uncertain (didn"t you know, then keep reading),

consortia like this can do a lot to help Nascom users world wide. We have twisted
their collective arms for an advert which covers many products you may not have
previously heard of, and we hear there is yet more to come.

On the score of collectivity (sounds a nice socilalist, this fella), we've been
thinking that this newsletter is exclusively about Nascoms. Yet when you get to the
end of this ‘Chairman’s bit”, you will realise that the likelyhood of more WNascom
{(Nascom meaning from Nascom) goodies appearing 1is disappearing as fast as fried
snowballs. Yet other goodies are arriving thick and fast from other sources. We
already have the Winchester Technology colour graphics board and Interface’s EPROM
card, both Nasbus compatible. We have heard rumours about a new WNasbus based Z80
computer being planned for the middle of next year (shades of Nascom 3}, and the
rumours about a mini programmable graphics is certainly more than a myth. Anyway, to
the point. Whilst we think that this newsletter should remain an organ for the
enlightenment of Nascom owners, we also feel that more emphasis should be put on
Nasbus itself. What do you think? The more manufacturers who support Nasbus the
better? Or should Nascom and Nasbus be allowed to sink dinte oblivion, and simply
remain a name known to a few.

Now to the bad news. (No not that, not yet). Richard Beal, who has been with
the committee from the start has resigned. He seemed reluctant to do so, but as he’s
about 16,000 miles away now, keeping in touch is a little difficult. His excuse has
been that his job has taken him to the Solomon Islands (right and up a bit from
Australia), and although he protests that he is working very hard, we can not remove
the pilcture from our minds of him sitting on some sun scorched sandy beach under a
palm tree sipping coke. Thank you for all your time and help in the past Richard. Just
one thing, when vou come back in March, please don’t bring back NAS-8YS 4, 5 and 6
with you !!! :

Now the really bad news. You may have seen in the press that Nascom had been
rescued by Alteck Technology Initiatives headed by one Peter Mathews. Having met Peter
and his associates I can say that they seem ‘nice people’. Peter, an avid Nascom
owner, and Managing Director elect of Nascom voluteered to be our dodo. That killed
several birds with one stone, giving us just the type of dodo we needed, and one that
would listen to the INMC when it came to grass roots requests regarding Nascom
products. Sadly it seems it has all fallen through. I had a phone call from Peter only
a few days ago to tell me the news, as he felt it important that the INMC should be
*in the know’. I must admit I was flattered by this, and yet saddened by the news. 1
don’t know why the deal didn”t go through, and it would be unjust to speculate. I just
feel sorry for Peter who I think would have made a great success of Nascom.

All thie puts the future of Nascom in question again. The receiver is
continuing to manufacture Nascoms and they are being supplied to the dealers. However,
dealer quotas are now falling further and further behind the delivery requirements,
and 1if I may get a personal ‘“gripe’ in here in the hope that the receiver will read
this; the profit on the quantity of Nascoms supplied last month did not cover the cost
of my company’s advertising. We could have sold three times as many Nascoms as were
supplied. If this situation continues much longer, then from a pure economic point of
view, mwy company can no longer afford to advertise Nascom, and that would be one more
nall in the coffin. I think we are all agreed that Nascoms are very good products at
the right price in the market. Please Mr. Reciever, make more of them to keep it
alive.

D. R+ Hunt.

Letters

Machine Code Programming - made easy ?

EEEEIE = ESEmEEESSE T

Dear Sir,

Firstly, to those Nascom owners who read with %trepidation every article purporting to
teach machine code programming the 'EASY' way (apologies to Dave Hunt). When I bhought
my Nascom 2 early this year I found that excellent though it is, the Basic very soon
lost its challenge as familiarity made programming a fairly easy matter and I became
interested in machine code routines as being so much faster and more versatile. So in
my innocience I went out and bought the SARGON bhook (a chess program ligting in 8080
ASSEMBLY language (TDL MNEMONICS)). Naturally, I was utterly lost immediately,
although I understood what 'Hex' numbers were and what various instructions did to the
Z80 registers. It was then that I discovered Assemblers, sessential +to comfortable
machine code work. I sent for the V & T Assembler as reviewed in your pages (issue
5/17) and began the laborious process of translating the TDL mnemonics Lo Z80
mnemonics using the assmbler to store the precious 1listings on tape. Purely by
coincidence I came ascross the Liverpool Software Gazette feature on converting Sargon
for Nascom 1. Suffice it to say that eventually, by assembling Sargon in two halves
and spending a week or two debugging I got a working program! Worse than that, it beat
me every time!

Now, I had read articles ad nauseam on machine code programming and understood each
atep as explained, but 8till T never knew how to get off the ground, what registers to
use for which functions, etc. It was not until T had spent a month immersed up to the
elbows in Sargon and an assembler that I began to gee what it was all about. I started
by assembling blindly and finished by understanding how the program works, how an
assembler works and how to use the Z80 instructions in a practical way. I have even
written an alternative routine for Sargon fo have it play itself at different levels,
a feat I could never have considered 2 months ago! I think the point is that to pick
up the ideas of machine programming, it takes TIME to become familiar with +the
concepts concerned, a practical program to work on to provide the motivation to 'get
things right' (I never found that slogging through examples of 16 bit multiplication
interested me enough for the details to sink in) and good software to lend a hand (in
this case V & T's assembler).

Incidentally, I recently bought the Bits and PC's +toolkit which has brought back the
excitement to Basic programming by eliminating tedious processes such as numbering
lines, re-numbering entire programs, appending programs onto each other, listing
contente of variables ussd after a run, finding strings, listing lines in compressed
form, finding lines containing errors, single stepping with display of wvariable
contents, converting hex numbers to decimal, repeating keyboard inputs, and much more,
by providing Direct-mods commands %to do it all for you. (Ed. Ses reviews slsewhere in
this issue.) The only drawback it has is that it uses the input and output tables -
excluding their use by Basic machine code routines (T'm sure there's a way round
this), and to run under the toolkit 'old' Nas-Sys programs in BASIC may need minor
input modifications. A pity Toolkit has "find string" without "change string" but this
is just a quibble. For those who have entered Super Startrek or similar programs with
the XO command so as to get 72 characters per line, Toolkit has trouble with finding
strings in these lines, but other funciions seem 4o work OK.

For two Eproms (the contents of which are relocatable) it's a bit heavy on the pocket,
but a dream to use, and all things considered, good value for the 'Keen Programmer' in
Basic.

FREE! Here is a simple idea to control the speed of the CRT display by using the User
output routins.

In Bagic my version is as followas:
{The routine starts at ODOOH and is 12 bytes long)

20 DATA 3192,3%28,31187,1918
30 FOR I = 1 to 6

40 READ X,Y

50 DOKE X,Y

60 NEXT I

LINE 10 contains the routine.
LINE 20 containg the addresses to be changed.

To vary display speed, POKE 3330,X where X can be 1 to 255, X=1 is Fast, X=255 is
Very Slow ! This can be done at any point 1n a progranm.

In Machine Code, it looks like this:

0D0O0C F5 PUSH AF ; SAVE AF

0oD01 06 01 LD B, 01 ; O1 = DELAY CONSTANT
0DO% FF RDEL + RIT 38

0D04 10 FD DJNZ =2 ;

nnnNg ™ POP AF « RRSTORE AT

oDoT €9 RETURN ; Return to sender !

To EXECUTE FROM NAS S5YS:

Load Routine address into OCT8

Load Table address (OC7E) into OC73
These ars the Output Routine Addrsess {UOUT) and Start of 'table of output routines'
(OUT) respectively in the Nas Sys workspace. '

Here is a routine which will save the trouble of entering these addresses by hand each
time:

24 78 07 LD HL,0T77E ; Table address (O77E)

DF 71 SCAL NOM 3 Call change address routine
21 XX XX 1D HL, ROUTINE ADDRESS = XXXX

22 78 0C 1D (0078),HL ; Set jump to user routine

DF 5B SCAL MRET + RETURN +to menitor.

This can be tacked on to the end of the routine itself (or onto the beginning) and
should be executed before trying to change display speed. To vary speed, load (Routine
address +2) with the value required. Remember, '0' will give you a very slow display,
but '1' will give almost normal speed. This is why I have set the initial speed at

'1'.

Yours byteingly,
DAVE LORDE
Pontyclun

5. Wales.

Ed. There is now a tape version of the Sargon chess availabls. It comes complete with
the Sargon book, a graphics EPROM containing a Chess set, and 2 small piggy-back board
to allow switching between the normal graphics and the chess set. This is produced by
Bits & PCUs, costs 35.00 plus VAT, and is available from various Nascom distributoras.

D.J.Software 7

In the last issue of INMCB80 News there is a very interesting article about converting
Zeap 1.0 to Nas-Sys operation. I would like +o obtain & copy of +the patch tape
mentioned in +this article, but I cannot find any other reference to DJ Software who
supply it.

Please can anyone give me their sddress?

J.B. HAWKES
Aylesbury

Ed. - Sorry, we don't know. Any offers ?

Heapa of Praise

The last isaue (INMC 80-1) of the newsletter exceeded all expectations (including the
one that it might not come at all !). Personally, I would not complain if +the
subscription was increased, as it represents such good value. "Piranha" is worth the
annual subscription alone. Come to that, so is the modification to set the Nascom 2
cassette interface running at 2400 Baud! (Eat your hearts out T**dy, P*t etc.).

Thank you.
Graham 3mith
Stockport.

Plotting Moda.

Dear INMCBO,

With reference to INMC 80 Iss.1, may I suggest the following changes to M.Taylor's
plotting routine. In genersl it is convenient to have the origin on +the Ybottom 1left
rand corner. Also a MOVE not LINE command may be desired.

The following changes are proposed:

65507 B=ARS{B-44)

65508 IF T={ THEN X1=A:Y1=B:RETURN

65509 TIF T=1 THEN X2=A:Y2=B

65510 IF Xi=X2 AND Y{=Y2 THEN SET(X2,Y2):RETURN

65516 SET(X+X1,Y):NEXT:X1=X2:Y1=Y2:RETURN

65519 SEP(X,Y+Y1):NEXT:X1=X2:Y1=Y2:RETURN

This modification allows +the user to move the cursor (or pointer) acrosg the screen
and draw lines from any two points. The following variables are used:

A = X-coordinate (horizontal)

B - Y-coordinate {vertical)

T -« (=1 Move to coordinate, =2 line to coordinate)
{First command must be a move>

Sc the program:

10 A=10:B=10:T=1:G0SUB 65507
20 A=80:B=10:T=2:G03UB 65507

would draw a line from (10,10} to (80,10).

Using this method an array of coordinates could be plotted within a short loop. As an
example the following program is suggested:

10 DATA 10,10,1,80,10,2,80,40,2,10,40,2
11 DATA 10,10,2,20,15,1,30,15,2,60,15,1
12 DATA 70,15,2,45,20,1,45,25%,2,35,30,1
13 DATA 40,35,2,50,%%,2,5%,3%0,2,0,0,1
14 DATA 25,20,1,25,20,2,65,20,1,65,20,72
20 FOR I=17020

30 READ A,RB,T:GOSUB 65507

40 NEXT I

50 END

Por a clearer picture try GOSUB 65508 instead in line 30. I hope this med. will be of
some use.

Yours faithfully,
K. Kishimoto,
Manchester.

Regerved Words

Dear Sirs,

Firatly, let me point out yet another sinful srror in the GREAT "NASCOM 2" book of
WISDOM. Nowhere is there mention of the 'MO' error (MISSING OPERATOR) (There is in my
manual, as ‘'MISSING OPERAND' - Ed.) which occurs when an argument is missing from an
equation. Incidentally a list of error codes can be found inside the Basic Rom at
locations E2B9 through E2DD. .

Secondly, here is a program which will generate all the instructions and statements in
the Basic language and place them on the line number egqual to the instructions

regerved character valus.

O0poc 0 21 FA 10 LD IX,10FA

opc4 21 00 11 LD HL,1100
0DO7 11 06 0O LD DE, 0006

CDOA 06 FF LD B,FF

oDOC DD 75 OO b (I1X+0),L ;$ LOOP
ODOF DD 74 O1 LD (IX+1),H

0D12 DD 70 02 LD (IX+2),B

OD15 DD 36 03 00 LD (IX+3),00

OD19 DD 7O 04 1D (IX+4),B

ODIC DD 3% 05 00 LD (IX+5),00

oD20 DD 19 ADD IX, DE

oD22 19 ADD HL,DE

oD23 10 E7 DJNZ, $ LOOP

OD25 DD %6 00 00 LD (IX+0),00
0D29 DD 36 O1 00 LD (IX+1),00
0D2D DF 5A SCAL '2'

To run this program, first initialise the Basic interpreter with the 'J' command. Then
return to the monitor and execute the above program by typing B DOC NL. This will
generate +the program in Basic and return control to the interpreter. Then type 'LIST'
NL and the instructions will be displayed alongside their ASCII {CHR$) values. WNote
that the line numbers are in reverse order. Basic uses a& list of memory addresses
rather than line numbers to determine which order the information is printed out.

Yours,
B.E. Kelly,
Yate, Bristol.

Money Wasters !!

Dear Sir,

If, as you claim, you are short of money then I suggest you stop wasting our
subscriptions on publishing c*¥*p -~ like pages 4 and 48 of Issue 80-1.

Dr. G.R. Kelman.
Leicester.

More Praise

TEEEESESIITEIX

Dear INMCBO,

I waa very pleased to hear that the TNMC was back in business with the same committee.
INMC(80) News im by far the best of the microcomputer Journals if you are a Nascom
owner. The only thing the others do better is get advertisements - good luck in your
efforts. Provided that they are Nascom-related I don't see any objection to much more
than the 5 pages you have suggested, provided of course that there is still some
editorial matter left. Related possibilities that you have probably considered already
are the insertion of separate advertising material when mailing the News, and using
the mailing list for an independent mailing shot of advertising matter. I'm not
usually all that keen on being on mailing lists, but would welcome it in this case; it
isn't easy to keep track of all the hardware and software being offered for Nascoms
these days, though it is certainly encouraging that other manufacturers are showing so
much interest.

Could I suggest that a review of the ways of housing a Nascom would be useful ? I have
a Vero frame - Vero's own, not the Nascom version - but am not all that pleased with
it, especially not with the accessories {(front panels) which turn out to be unsuitable
for Nascom 2 after they have been sold to you !

Dr. Dark

I'm sure someone must have made the point, but as the gstatement has been printed twice
can I correct the impression that ED6B is an unpublished op code. It is in the manuals
as LD HL,(nn), although thers is a shorter version: 2A. Similarly, ED7B, mentioned in
INMC News 7 is listed as LD SP,(mn).

Yours sincerely,
G. DAVIES,
Surrey.

NASCOM CRISIS

Dear Sir,

The Nascom crisis is a digappointment - this is Jjust to say I appreciate your work and
hope +that INMC80C can continus. I only joined a few months ago but the two newsletters
were well worth the subscription {particularly as the contents are not available
slaewhere).

MIKE WHITEHEAD
Dundee University.

SPACE INVASION MODS 7

Just & few words of thanka for the trouble you are taking to keep the magazine going
after 81l the developments at Nascom and lots of good luck for the future. Please keep
the "KIDDIES GUIDE TO Z80 ASSEMBLER PROGRAMMING" by Mr. D.R. Hunt going for all us
beginners (ME).

I purchased "SPACE INVASION" by G. CLARKE from the Llibrary, can you +ell me what
changes are nesded %o run on my N2 under NAS-SYS as this will save me much money at
the local amusement arcade ? (Ed. Mr Clarke ?)

Youra, a frustrated programmer,
R.K.HANSELL,
Kilwinning, Ayrshire.

NEWBEAR CASSETTE INTERFACE and PASCAL

= = TEXTTSTS

Dear Sir,

I have just received Issue 1 of INMC News 80 (or THE RETURN OF THE INMC!). I hope that
this is not the start of a long series (Son of INMC, INMC rides again etc etc). On
reading it, a few points could do with expansion or clarification, hence this letter.

Mr. Keneally's review of the Newbear/Cottis-Blandford cassette interface may serve to
introduce others to the joys of high speed cassette loading. I have been using the C/B
interface for 18 months now at 1200 Baud with astonishing reliability, and have built
three units in total (twe for myself, one for a friend) all of which work very
reliably. There are one or two points which may help Mr. Keneally achieve reliability.
In the ACC Newsletter Vol.16 No.5, dated December 1978, Bob Cottis points out that for
high mains hum, either the input capacitor can be reduced +o about 10nF, or a 1K
preset placed between Sv and ground, with its slider taken to the amplifier side of
the input capacitor. This preset should be adjusted so that with no input asignal the
schmitt +trigger is 1in the middle of its hysteresis band i.e. midway between the two
points at which the schmitt changes state. I have done this on all the boards I have
made, aet the frequency of the 555 i.c. with a frequency meter, and they can all read
each others tapes very reliably. One other point on this board: The Nascom uses the
same <¢lock for receive and transmit, but the C/B board does not. The transmit clock
from the C/B is selected by the rate selector option. The receive clock is slow
running, and is pulled up by the phase locked loop to mateh the receive clock demanded
by the incoming data.

-.—lo_

If the C/B board is connected to the N1 with both clocks to the external clock pin,
then the output cleck will cause the receive clock to slave to its own frequeney, and
one might as well not have a phase locked loop at all. The clocks should be connected
to the UART by a single pole double throw switch, which is thrown to the receive side
to receive, and to the transmit side to transmit. Alternately, a bit of surgery on the
board will allew a track to be cut which joint the two cleck pins on the UART, and the
correct leads attached to each pin. In my cases, I took all the comnections I required
to a comnecter I mounted on the N1 board, and mede a connection through a multiple
switch to allow either ¥Nascom Tape Standard or 1200 CUTS to be selected. The
reliability +this modification (of seperate clocks) has given is unbelievable - I've
almost forgotten about tape errors.

With regerd to tape quality, I use Microdigital mostly, and for very large filea BASF
LHG6O or FUJI FL30, with no problems at sll. If available, use a frequency meter Yo set
output clock from 555 to T6.8Hz, and if thought desireable, check the capture range of
the PLL as described by Mr. Cottis in PCW December 1979.

Ariging from my notes on implementing a Tiny Pascal, I have since optained from LP
Enterprises a copy of the 8080 runtime support and P code to machine code converter
written in Basic. These, bound together with a copy of the three original articles so
that +they form a complete unit, cost 11.95, and would form a good starting point for
gomeone wishing to get a Pascal up and running. Also of interest are articles in the
LSG first four issues on the subject of getting this language running on a C*mm*a%r#*
P*t (I don't use dirty words, unlike Dr Dark). As my own machine has packed up, and is
currently having a holiday in Nascom's repair Dept, I have not been able to progress
any further with the development of the Pascal. I have however discovered +that there
is available from Springer Verlag: "A Concurrent PASCAL Compiler for Minicomputers" by
A.C. Hartman, which describes a seven pass compiler for Concurrent Pascal in detail,
and from MeGraw Hill: " .the BYTE Book of PASCAL", with "two versions of a Pascal
Compiler, one written in BASIC, and the other in 8080 agsembly lenguage". I have both
of these books on order, and will report on them when they arrive.

General Points:

Weller's assembler has a nice feature - it can read source from a paper tape, and
asgemble 1it, which is a nice trick for very large programs. I must have a go at that.
It could be implemented on Zen fairly easily.

Has anyone given any thought to the inelligance of designing for the Z80 as if it were
an B0BO with a few extra instructiens? In my view the Z80 is a very different machine
to the 80B0. For example, in the case of a Nascom, which is not running under
interrupt control in general, the ancillary bank of registers ig there and empty most
of the time. Zeap uses this to good advantage. The indexing instructions are very
rarely used, and yet they can very easily lead to a nice neat compact solution to a
problem. The relative jumps can allow position independant code to be written, which
can have advantages if you run out of memory on a big assembly. The Nascom BASIC aseems
to be an 8080 Basic with input/output patches all over it, which are concerned with
deciding which moniter is available, and even emulating it (?). I have discussed the
disassembly with a fellow Nascem fanatic {a trusted associate) and we are of the
opinion thet were it written in 280 cede from the beginning, it could be made about 20
o/c smaller and about 15 o/o faster. For example, it could on initimlisation look %o
sge which monitor it had available and set a flag which it would look at each time it
wanted input or output, instead of doing all the tests it seeéms to do. As I am working
towards a Pascal compiler, I am not inclined to have a go at rewriting it - I think
I'11 save the 35.00 for the XTAL BASIC and put it towards the price of CP/M V2.2 and a
floppy disc controller. Can anyone help with details on I.B.M. 33FD 8" floppies - T
have two on indefinite loan, and would like to get them running, but have no further
details other +than +that +they are in working order. I understand them to be single
gided single density, rather old-fashioned and outmoded really, but still 250K bytes
on sach !

-11-

Finally, remember the original definition of a committee - a body of people appointed
to sit in judgment on a lunatic to decide his sanity!

RORY O'FARRELL
Co. Wicklow,
Iregland.

LOCAL CLUBS

Dear 3ir,

Upon joining the INMC a few months ago, I was taken by how comprehensive and useful
the newsletter 1is, considering the low budget you must have to work within. I would
however like to see more details of local clubs and club asctivities made available, if
there are any !

‘Every club depends on the interaction and communication of its members with the H.Q.
With this end in mind if there are no local group meetings being held then why not ? 1
pergonally would like very much to meet fellow owners of NASCOM's (perhaps over a ple
and a pint in a local hostelry) so we can lurch out of the door satisfied in the
knowledge that we are members of an elite club who have exchanged ideas (visions ?) of
the system expansions to come!

With this purpose in mind might I suggest that any willing members or non-members (are
there any) who would like to meet with the aforementioned in mind, please contact me
at the address below so that we can arrange something, sometime, somewhere in the
locality of 3t. Albans. Looking forwerd to hearing from someone out thers.

Bye for now.
JOHN MARJORAM

% Blenheim Road,
3t. Albans.

Eds Any others who would like their addresses published with a view to starting a
local club ?

HELPING THE HANDICAPPED

E & 1] ERTZTEIWMIR

Dear Sir,

During recent months I have been made aware of the activities of 2 number of people
involved with applications for wmicroprocessor based products for the physically
handicapped.

In particular T have read with interest an artiecle that appeared in a recent issue of
Computer Age written by Patriclk Poon.

Although I have left Nascom I would like to see if it is possible to gather together
names of people who would be interested in both the specific project Mr. Poon was
involved in, i.e. children with Cerebral Palsy, and also other aspects where the
microcomputer could possibly aid the disabled.

I am prepared to offer the services of-}%ﬁérface as a co-ordinating body and mailing
address and I would very much like to knmow if any of the members of your club have had
any involvement with, or would be prepared to become involved in a project or projects
relating to this extremely important field.

My understanding of the situation concerning direct or indirect government support is
that there is virtually nothing, and it is obviously going to require the pooling of
resources of both private commercial organisations, private individuals, private
charitable organisations, and research development capabilities which lie within the
various placea of advanced studies and teaching.

I have also been in touch with Peter Deacon who indirectly is liked with the Spastics
Society and I would 1like to arrange a meeting of interested parties to discuss the
matter further.

If you would be kind enough to publish this letter I know it would reach nearly ‘two
and a half thousand active Nascom users, some of whom may be prepared to assist in
this project.

Yours sincersly,
J.A.Marshall,

Managing Director,
Interface Components Ltd.

PASCAL

PASCAL Special Interest Group

IR = [T

Object of the INMC8O special interest group ia +to bootetrap a subset of
Pascal to run on Nascom. Bootstrapping is the process whereby a very small subset of
8 language is implemented, and used to compile itself. This small compiler 1is then
used to compile expanded versions of the subset until a satisfactory result is
achieved.

Because of the amount of work in implementing a language, as much use asg
possible should be made of existing work. The Byte Tiny Pascal in Basic (1) or 8080
machine code (2) forms a good starting point, as the source ig readily available,
and an implementation for Nascom is under way (3) or commercially availadble (4).
This program compiles the Pascal source into a series of subroutine calls to runtime
support routines.

As a working aim, the intention is teo implement a Pascal compiler for Nascom
running under NAS-SYS, with floating point arithmetic to at least the accuracy of BK
BASIC (5), but possibly better, supporting the subset of Pascal implemented in the
Byte Tiny Pascal, extended to include the Pascal "type' constructs. The object
machine is a 32K Nascom, with ideally runtime support in Eprom, and tape I/0 for
storage. For efficiency, the runtime routines will be written in machine codse, and
treated as system calls by the compiler. The program when finally completed will be
inserted in the INMCB80 program library, as will all the major intermediate steps.

CONTACT POINT : Rory O'Farrell,
Tincode,
Blessington,
Co. Wicklow,
Ireland.
(Stamp or International Reply Coupon please).

Refs:

(1) BYTE Nybbles LS100, "Tiny Pascal Compiler". L.P. Buterprises 11.95.
(2) BYTE Book of Pascal, McGraw Hill. 15.00. :
This also contains reference (1) ... much better value !
(3) INMC8BO No.1
(4) Datron Micro Centre, Sheffield, 35.00 + VAT.
(5) 280 Gourmet Guide and Cookbook, Scelbi 8.90. MOT.

-13-

Disks

DISK SYSTEMS

It had to happen, three competing disk systems for Nascoms. Two from the
States, one via our old friends at Barmett, one via Airamco in Scotland, and the third
is a British designed one avallable from a consortium of WNascom dealers, and
originating from the nether depths of Farnborough, Harrow and Kingston. Now, at this
stage, we know very little about the Comp system, nothing about the Airamco, and an
awful lot about the Henelec/Gemini system. In fact the non appearance of the October -
November issue of the INMC80 News is directly attributable to the Gemini Disk System.
You see, the two main editor/typists involved with the INMC have been up to their
eyeballs getting the thing ready for production. No excuses, but the laws of nature
still only allow for 24 hours in a day (I'm afraid we're still working on that one,
very tricky !!).

We don’t intend to review the systems here, as that would be a trifle biassed,
but by Christmas there will be some 200 Gemini systems around (and who knows how many
of the others), some points about disk systems ought to get a look din. We haven’t
heard from a single member owning either Comp or Alramco systems, and at the time of
writing Gemini systems are only just going on stream, so we haven’t had any user
feedback on that either. But as we know a lot about the Gemini, and the majority seem
to be going to INMCB0 members, a few hints and tips won’t go amiss.

Now the EBASIC supplied with the system works on ASCII disk files, so how do
you get some of your nicer WNascom Basic programs onto disk without the tedium of
typing them all out again. Easy. First LIST the Baslc program to tape. How? Load the
program under YWascom Basic, go into the MONITOR, type X0, and warm start Basic. Zap a
cassette into the recorder, start it up, set the Basic WIDTH to 80, set the LINES to
32000, and then LIST. Your Baslc program goes to tape as an ASCII file. If there are a
number of programs to be transferred, copy them to tape at the same time, as changing
from NAS-SYS to CP/M gets a bit tedious if repeated too often. Ok, s0 now we have a
tape of the Basic program(s) saved as ASCII strings, how to get it onto disk.

Because the inimitable RB had more than a passing influence on the design of
the software for the Gemini system, there is a routine hidden in it which scans both
the keyboard and the serial input. Does that ring any bells? If mnot, you haven't
uvnderstood how WNAS-SYS and NASBUG work. Anyway, Under CP/M, PIP.COM is really quite
clever. It“s not just a disk copying program !l! In effect, it can copy anything from
anywhere, and put it someplace else. We want the tape (which because of the scanning
of the serial input), comes from the keyboard routine te end up az a disk file. 1In
CP/M, the keyboard and video are refered to collectively as CONSOL so we want to PIP
from CONSOL to disk. Snag, the stuff is coming in as a continual bit stream, so there
will be no time for the disk system to stop and shovel that data away whilst the data
is coming in. So effectively we must load it all into a buffer first. PIP has Jjust
such a command.

A>PIP FILENAME.BAS=CON: [B]

The [B] is a PIP option to buffer the input in RAM before sending it to disk. Give the
disk system that command, wait until a prompt appears and start the tape. The ASCII
strings on tape will be gobbled up into RAM, and when the data i1s finished, type
‘etrl/8’ to tell it to write it to disk and ‘ctrl/Z’ to tell it it’s finished. If you
only have 16K of RAM and the program is a long one, you won't be able to load it all
at once. Load about 8Ks worth, stop the tape, type ‘ctrl/S’ to write the first bit to
disk, rewind the tape a bit, and having written the f£first half away, restart the
cassette, The file will be a little screwed up in the middle, but having got it on to
disk you will have to edit it a bit using ED anyway, so it shouldn’t be too difficult
to unscramble the overlap in the middle. Don“t expect to be able to run a Nascom Basic
program under EBASIC, they’re syntactically different, and EBASIC is particularly
fussy about spaces between reserved words. Unless it 1is the simplest program

-1d-

imaginable you are going to have to edit it.

Although this little piece has been written with the Cemini system in mind, it
applies equally to the other two (assuming that Comp and Airamco have written the
CBIOS correctly). We doubt that the serial input looks at CON:, but it should look at
RDR:, g0 substitute RDR: for CON: in the above command.

Another little point which applies generally to CP/M 1.4 4is that files are
written and read in 16K chunks known as extents. Now what is not obvious is that if a
program is greater that 16k, ie: more than 1 extent, then when reading a program back,
CP/M has return to the directory to find the location of the next extent. Whilst its
there, CP/M writes a flag into the directory to tell it its gone on to the next
extent. If you write protect a disk then you won’t be able to read files which are
larger than 1 extent as CP/M won’t be able to write the flag into the directory.

With the Gemini system, it can’t have escaped your notice that the keyboard
option defaults to lower case when using SYS.COM. We think Richard did it because he
liked it, and after a time I now prefer it, however, it can be a pain at times. ED has
a fuony quirk with the ‘T° command which even though the ‘V’ option has been selected
to lower case, it will only input lower case if the ‘I’ command was given 1in lower
case. A Digital Research bug ??? Another case in point is the Microsoft MACRO-80
assembler which will only accept commands in upper case, yet Microsoft’s LINK~-80 will
accept either. Confusing ain’t it. Dear old RB having decided to default the keyboard
option to lower case, didn’t leave any way of changing it. In the end I was forced to
find out how it worked and came up with this stupid little .COM file. Enter it under
DDT and then SAVE it.

UPPER/LOWER CASE SWITCH MACRO-80 3.35 Page 1
Title UPPER/LOWER CASE SWITCH
Subttl Version 0.1 for SYS 1.1
+Comment %

PROGRAM CC.COM

Purpose; to reverse the kbd option bit
within 8YS V1.l. For use with Henelec and
Gemini CP/M disk systems.

Finds the position of KOPT by taking
the known location of the warm boot jump and
the known offset between WBOOT and KOPT.

D. R. Hunt 30/11/80 *
.Z80
0000” ASEG
ORG 100H
0000 $WBOOT EQU O0000H ; Warm boot jump
0986 KOPT EQU 9B6&6H ;3 Offset from BIOS
;1 Calculate positibn of KOPT.
0100 2A 0001 LD HL, ($WBOOT+1)
0103 11 09B3 LD DE,KQPT-3
0106 19 ADD HL,DE

3 Get KOPT bit, toggle it and put it back.

-15-

0107 7E LD A, (HL)
0108 EE 01 X0R 1
010A 17 LD (HL),A
; Return to CCP
010B c9 RET
END

Not a bad 1little trick that, note the use of the warm boot jump to tell us
what size the CP/M system is. This little trick has other uses. ¥or instance how about
a tape read routine 1in generalized Nascom format. The problems come thick and fast
with that one. The main problem is to duplicate TX1l out of NAS-SYS. This is the one
that goes away, displays the header and checks the checksum. Because of the length of
the CRT routine it barely makes it at 2400 BAUD at 2MHz on a Nascom as it is. Now to
do the same thing under CP/M takes even longer, not only does the poor little byte to
be displayed have to fight its way through the CRT routine in CBIOS (thats already as
tortuous as the one in NAS-SYS), but it has to go through all the CP/M FDOS checks
first. Belleve me, it only just makes it at 1200 BAUD at 4MHz with no wait states. So
how to bypass the FDOS (“cos we already know the data is correct)? Well it would be a
simple matter to call CONOUT in the CP/M, the only trouble is, 1t moves about with
different size systems, s0 we have to find out where it is first. We already know
where the system is located because the warm boot jump at 0000H tells us, we also know
that CONOUT 4is offset from WBOOT by a fixed amount, so we can calculate its address.
Now to call it. We use what is known as a “fake call’. Find out where the routine is
to return to, push that location onto the stack and then jump to the routine, the
address of which we have just calculated. Having completed the routine, the RET at the
end pops the last address off the stack (as normal), and returns. Provided nothing
happened to upset the stack, this will be the return address. The CRT routine looks
like this:

NAS-SYS MACRO-80 3.35 Page 1
Title NAS~5YS
Subttl CRT, display on screen
.Z80
GLOBAL CRT
.Comment *

This routine displays A on the screen. It
replaces ROUT in NAS-S5YS.

D. R. Hunt 16/9/80 *

0000 SWBOOT EQU 0000H
0009 CONCUT EQU 9 3 Offset from WBOCT
0000~ F5 CRT: PUSH AF
0001° E5 PUSH HL
0002° D5 PUSH DE
003" C5 PUSH BC

; Save return address
0004 21 0011’ LD HL,RTH
0007 E5 PUSH HL
0008” 4F LD C,A

; Calculate call to CONOUT
0009” 24 0001 LD HL, ($WBOOT+1)

000C” 11 0009 LD DE,CONOUT

-16-

000F” 19 ADD HL,DE

5 Jump to it
0010 E9 JP (HL)
oo11- RTN:
00i1- Cl POP BC
0012° D1 POP DE
0013” El POP HL
00147 Fl POP AF
0015° Cco RET

END

Not a bad little trick, and by using it, you can get at all the legal calls within the
CBIOS. The only snag is that I°m not sure it’s entirely legal. I'1l bet some person
will decide that it shouldn’t be used within CP/M.

S5till thats all about disks for this time, except to remark that this issue of
INMC has been prepared using the new DISKPEN with all its enhancements, and of course,
the whole issue was saved on a couple of disks.

SCREEN CONTROL UNIT REVIEW

This is a review of the Screen Control Unit produced by:
R. W. Electronies, 27 The Vineries, Acocks Green, Birmingham, B27 6SB. The kit costs
27.00 inc. P&P and VAT.

This control unit provides 5 functions :— reset, display on (normal), display off
(blanked), white on black (normal), and black on white (reverse video). It is
constructed on a single sided 8" X 5.5" fibreglass pch that plugs into a NASBUS and
has a wire connection to an existing Nascom IC socket.

The sample kit provided for review took under 2 hours to build on the well prepared
board, the legends being very clear and informative. Over half an hour was spend in
inserting the wire links required since the board ig single sided.

No problems were encountered in building the kit. In fact this is one of the best
presented kits our reviewer has seen. The only hiccup occured because the kit was
first configured for a N1 (someone else can’t read simple instructions?) and could not
be tested on the N2 available. The kit is not intended to be changable between N1 and
N2 but with some careful soldering this was accomplished.

Anyone who is thinking of purchasing this kit should also acquire another edge
connector socket since there is not one in the kit.

Testing of the unit presented no problems (it worked first time) although the
suggested memory address for the unit (it uses a memory mapped port to control it)
seemed a little strange. The handbook suggests using address DOOOH (selected by wire
links on the board) but 0800H would seem a better alternative gince this is not used
by any known software and provides a record of the last code sent to the unit in the
first location of screen RAM.

In summary, this would be a very good first project for someone who purchased a built
NASCOM and now wants to learn a little about assembling kits. The unit offers only VDU
on - off, and screen Inverse, and as such would seem to be somewhat overpriced.
Perhaps a NASBUS socket could be provided in the price since it would appear that all
other Mascom hardware suppliers provide a socket in with their kits. However, 1f you
consider the time and effort involved in going it alone with a "DIY’ job, this unit
would probably work out cheaper.

-17-

Doctor Darks fDiar(v

DOCTOR DARK'S DIARY -- EPISODE 7

This could be a very long episcde. I was going to call it the "bumper try-to-write-
more-than-David-Hunt episode", but sadly it is now the "write-a-lot-becauss-I've-time
~to~spare episode”. Marvin is a very sick computer and will almost certainly be away
from home for some +time. Cheques of condolence will be gratefully accepted, of
COUTBO« s ’

SPIRAL WIPE CONTEST.

I hope lots of you have entered this brain-torturing competition. It wasn't my idea,
I'm not that sadistic. I have not actually sent an entry, but there is no truth in any
of the following rumours:

(i} it is because my game "SCRUM" didn't win the Christmas games competition.

(ii) there is no shorter or quicker way.

(iii) I didn't want to re-invent the wheel.

(iv) there is no rumour number four.

The fact is, at the time, Marvin was being rebuilt around several new parts, of which
more later, and I wouldn't dream of sending in something I hadn't tested. (Unless I
happened to feel like annoying every-one...)

WHAT THE OTHER PAPERS SAY.

The first quotation in +this new section comes from Henry Budgett's series on
microcomputers in the October issue of BE.T.I. and shows that not everyone invents the
wheel even once, or something....

"As an example of this, there are some 20 extra codes built into the 7280 that are not
mentioned in the manuals. Apparently they are not all guaranteed to work om all Z80's.
Anyone know what they are and what they do ?"

Can it be that the normally well-informed Henry dcesn't read INMCBO ?

There's an excellent article in Computer Age (September issue) entitled "Are Computers
Alive ?" WVWhile +the author dcesn’'t prove that they are, he knocks down flat all the
arguments I have ever heard people use against the possibility. The condition of
Marvin is probably best described as comatose, with bursts of insanity...

Meanwhile in Perscnal Computer World, the anonymous author of "Chip Chat" continues to
make strange remarks about Diego Rinecon of Computing Today. Apparently, Diego has the
game opinion as myself, when it comes to the hideous new binders now being sold by "0
Prawn! Sell more product" (anagram 8,8,5). Their first binder was excellent, but under
new management they sell a cuatard coloured thing in which the magazinea are retained
with string. I have considered "Gout Tidy, No Camp" second only to INMC80, ever since
they started sending me free copies. All T have to do, to earn this privilege, is fill
in a questionnaire each month, criticising or praising the various articles, and the
next month's issue arrives like magic. (I make these anagrams up myself, you know.
What is needed is a version of FKerr Borland's Corrector program to speed up the
process.)

QUICK HINT

When you are testing a machine code program on your Nascom, and have a BASIC ROM that
gets jealous, it is a good plan to put HALT (and you should know that is 76) in all
the unused RAM above your program. Then when your perfect program runs away, you won't
have the BASIC initialising itseif in the area 1000H to 10D6H.

(Ed. - Alternatively put E7 in the unused RAM, +this will give a register display
snould the program crash, so you'll know where you've gone to !)

-18-

"SORTING IT OUT" SORTED OUT (see last issue)

o o - i

Line 100 should read as follows: 100 IF A(I)<X THEN I=I+1%:G0TO 100.

SUBERSIVE THOUGHT

I can think of no reason why it should not be possible to connect a Nascom to ona of
the soon-to-be-legal Open Channel radios. If there is no reagon (experts, please
advise!) which channel shall we grab (sorry, allocate) to ourselves?

ISN'T BASIC WONDERFUL ? SECTION

Before poor Marvin became ill, I managed, with the talent I so often display, to
produce an error message from the BASIC that doesn't appear anywhere in the
documentation; it was an MO error. (Ed. Missing Operand.) There's a whole new field
here, which goes far beyond unknown opcodes - FS error, for inatance, is Forgot to
Switch on error.

My younger brother, who has an M*4 for sale (Richard Beal could make a Nascom 1-2-14;
or any offers ?) whilst writing the ultimate starship simulation, used an amazing
array, which at one point in the program was accessed as follows:

X9=A(A(1,2,4(1,2,3)),4(1,3,4),P(1,0,2))

No error message whatsoever was produced, and T am told that it is obvious what this
does, but I didrn't understand his explanation at all. He tells me that any M*14 owner
would immediately understand the full implications of such a thing with no trouble at
all-...)

I propose a competition for users of ROM BASIC, to see who can enter the longest 1lirne
of BASIC using single (i.e. three at a time ') key entry of reserved words. The line
must make sense, should preferably do something useful, and must produce no error
messages when run. A hint - RESTORE is the longest word you have available, so you'll
need to use it a lot to win.

LATEST EXPENSIVE ACQUISITIONS.

- -

I bought myself (or rather, Marvin !) an 8 amp power supply, and haven't seen our
usual postman since he carried it up the hill. Any offers for the now redundant 3 anp
unit? The 8 amp PSU is so heavy, it makesg the Blue Oyster Cult look like Tiny Tim {not
a programming language). I suspect that if you put two of these power supplies
together, a black hole would form instantly.

Something to watch out for, which I apotted in time, when you get yours (not if, when.
Computing is the most serious addiction known to mankind and Heloise Fortran). If the
post office drop it on the end with the huge heat sink, the connections to the power
transistors can bend until they touch the casing. The casing will spring back into
shape, but if the thing is switched on in this state, I fear it is more likely o0 form
a super-nova then a black hole. Look before you plug it in and save money!

Another recent purchase is an EPROM board from the Merseyside Nascom Users Group. This
has eight sockets for 2708's and one for the BASIC ROM. It works perfectly at 2 MHz,
is delivered fast, and costs 46.00. My only criticism is that it doesn't have +the
connections required between lines 16 and 17, 19 and 20 for the Nasbus, that form the
interrupt daisy chain, but you can easily connect them yourself, or put it at the far
end of +the motherboard. I admit it is not as wonderful as the Interface Components
board, which has bells and whistles, but that one does cost mors.s..

I have not been able to test my other new board, an I/0 board, due +o the ongoing
negative hardware situation. More in another episode, perhaps. In the meantime, would
someone please send me a copy of any pages there may be in their documentation for the
board, with a page number higher than 8.

-19-

IS PASCAL NECESSARY ?

I put that sub-heading in to etir up some correspondence in defence of the people who
write long series of articles in the glossier magazines about structured programming.
Their second article tends to be full of rules you must not break, or your programs
will not be structured, and you won't be a "real" programmer. In fairness, it must be
said that the first article in such a series is usually full of excellent advice such
as design your program before you start to write 1%, make it modular and test each
routine as you write it. This is good; 2nd in my usual "do as I say, not as I do"
style T recommend it. The rules that appear in the second article are odd though. Why
must we never use GOTO ? Why is a "computed GOTO" doubly damned ? Will the sky really
fall down if I continue to write self-modifying code using undocumented opcodes ? I
think {(and remember, I'm not getting paid for this '} that you get paid more for iwo
articles than you do for one.

My greatest software achievement so far would have had to be about 6K in length if I
hed obeyed all those rules. It is in fact 1.5K, modifies itself when necessary, uses
IX and IY as four 8-bit registers, and won't work if relocated carelessly; you have
probably seen it advertised.

SOFTWARE IN PROGRESS.

Now that I have all this time, and can't sit zapping ¥lingons all night, I have
several projects under way. One of the least useful is an extension to Nas-Sys, in the
form of & Genuine People Personality. This should not be too tricky, all you have to
do is put a new routine addreas table together, change the table address in the
workapace RAM and add suitable messages Dbefore (after ?, during ?) the normal
routines. To prevent this from becoming boring, they shouldn't alweys appear, and
should vary. The counter-timer chip on the I/0 board should come in handy here. It
could also be used to produce a message if there is no input for, say, five minutes.
"I'm not making you depreased, am I?" would be probable. I hope to make Marvin very
much more like his Radio 4 namesakes....

T have also reatarted work on an improved Pilot interpreter, for use with Was-Sys, but
this is at present halted. I'm waiting for my copy of the Scelbi Z80 Software Gourmet
Guide and Cookbook, so that I can adapt (promounced "pinch") +the floating point
routines it includes. A friend showed me this book, and I recommend it for any Nascom
user who needs a good introduction to programming in machine code. My original
interpreter only had positive integer arithmetic; in case you think that would
suffice, you will be glad to hear that I recently lent a copy of it to a friend in the
hope that +the thing would get properly written out and sent in for the library. The
new version will also have a G: command for graphics, and some fancy screen
formatting, if I can get it to work.

I liked the article in Practical Computing, August issue, about a program +to play
"Adventure”. I have been giving some thought to how I would go about this. The printed
version is a program in "pseudo-code” which uses several tables of information to play
the game. To change the game you change the tables. My own, very slightly different,
approach would be to define a new language, with statements of various types for the
elements of the adventure: these would include place ststements, artifact statements
and so on. Then all (ha ha) that is needed is an interpreter for the language. Then I
looked at how much data would need to be stored, and came to the cohclusion that the
thing would need diske to be worthwhile. The coward's way out, and if one of you
proves me wrong, 1'll be delighted. (0fficial receiver, please note that I am waiting
for the chance to buy myself a disk controller board, not to mention the programmable
graphics unit.)

THINGS SOMECONE SHOULD BUILD.

them in exchange for one of each, should some genius manage to design them. Sorry,
Heloise, but I offered first.

-20-

It must be possible to make a colour graphics board that will display more than two
colours at a time in a single character space. And is there any reason why the user
shouldn't have control over the brightness of each pixel ? Ideally the resolution
should be as good as that of a colour television, of course. My rough calculations
indicate that it will need about 500K of RAM, and digital to analogue converters
capable of about 25,000,000 operations per second.

Dowr: to earth a bit for the second idea ! In the July 1980 issue of Personal Computer
World, R.M.Yoraton described how he added a Z80 and 8K of RAM to his 6800-based
system. A board like this, to Nasbus specifications, would really amaze the owners of
lesser computers. To the Nascom, the board would appear to be {say) 4X of RAM. Data
passed into this RAM area could be processed while the Nascom was doilhg something
else. SBeveral such boards in a system would make possible some really fast procesasing.
I could run my star ship simulator in real time ' Oh, what a givaway...

WHATEVER HAPPENED TO ? SECTION.
Whatever happened to:
(i) the Christmas game competition ?
{(ii) my entry for {i) ?
(1ii) all the maze solving programs I thought you would all have written by
now, aurely it's not too difficult ?
{iv) my 1list with item (iv) on it ¢

AND FINALLY, THE AREN'T COMPUTERS WONDERFUL ? SECTION
Here we see that a certain underwear manufacturer, from whom I will never buy =a pair
of gloves again, could use a little more care in the programming of their computer....

’)Jinfer is jush arcund the
corner-once again-are you

ullq prepa.recl ’or d?

AD/PDO/CLA

DEAR MR 2Mlé
nsnsngea LAsr“uxnrenv HOW THE SNOW LAY B0 l'mws IN

THE ILMINSTER ARBA AND HOW THANKAUL “gu

WERE ROR YOUR PANGY=KNIT LAD]ES' VESTY, WI#L*! WINTER

IS ONLY JUST ARDUND THE CORNER AND IT WONI'T BE LONG

BEFORE YOU ARE WONDERING IF SNOW WILL BE FALLING

-21-

Ex-stock

BACK ISSUES & INMC80 PROGRAM LIBRARY - NEW ADDITIONS

The following programs have now been added to the Program Library.

Address all orders to: INMC80, PLEASE NOTE: Interface Components Ltd.
c/o Oakfield Corner, are very kindly letting us use their
Sycamore Read, address as a Post Box. They cannot
AMERSHAM, accept “phone calls on our behalf. TIf
Bucks. HP6 5EQ. vou have any queries please WRITE. Ta.

NASBUG Programs

T44 Black Box V1.1 _ by G.M.Clarke 0.90
A game based on the cloud chamber experiment to discover atomic structure.

T45 Universal Chess Clock V1.1l by G.M.Clatke 0.60
Provides a chess clock for Standard, Allegro, and Lightening chess games.

T46 Factorial V1.l by J.Haigh 0.50
Evaluates factorial of N up to 900 digits precision on an unexpanded Nascom 1.

T47 Powers of 2 V1.1 by J.Haigh 0.40
Evaluates powers of 2 up to 2 to the power of 4250 on an unexpanded Nascom 1.

T48 Chomp V1.1 ' by J.Haigh 0.90
A NIM type game, played on a rectangular array of points.

2K TINY BASIC Programs

TB1 Simple Line Editor V1.l by J.Hill 0-20
Assembly language routines to add line editing functions to ZK TINY BASIC.

TB2 String Package V1.1 by J.Hill 0.70
Assembly langyage routines to add string handling te 2K TINY BASIC.

TB3 Stock Exchange V1.1 by J.E.Hawkins 0.15
Play the Stock Market.

POSTAGE and PACKING

UK customers please add 30p for the first program, plus 5p for each additiocmnal
program. For overseas orders these charges are 60p and 15p. All cheques to be payable
to me, oops, INMC80.

BACK T8SUES

All INMC and INMC80 back issues are available ex-stock. Because of reprint g£ests we
have reluctantly had to increase the price of these:

INMC 1 50p
INMC 2-7 1.00 each
TNMCB80-1 1.00

Postage. UK orders add 35p for one issue, plus 10p for each additional issue. Overseas
orders 70p and 20p respectively.

-22-

Kbd mods

MODS FOR DEMON TYPISTS by Derek Brough

Having, for the umpteenth time, cursed the lack of a left hand shift key on
the N1 keyboard, I decided to do something about it. The mods were quite simple even
though I only possessed two hands, and whats more it worked (gsecond time) much to my
purprise.

First the theory - briefly the keyboard works by having an 8 x 6 matrix of
keys with eight driver wires which are pulsed in sequence under software control. Six
wires sense which key (if any) is depressed (ready to prescribe some Valium no doubt).
To fit a second parallel shift key we must wire the new key in series with both the
drive and sense wires of the existing shift key. The wires must also be connected with
the correct polarity otherwise the sensed pulse will be upside down (which is why ny
first attempt didn't work).

Now for the painting by numbers:

1) Obtain the spare Licon key and blank keytop (price 1.20 (I think) from
Interface Components, Amersham).
2) Look a8t +the underside of the keyboard pcb, placed with the space bar to the

top. It will look something like diagram 1. {I have added the letters to the
drawing. The capital letters refer to the key pins, the small letters to the

tracks.)

3) Carefully drill 4 1mm holes immediately to the left of the "2’ key, on the
same horizontal line. Dimesions as per diasgram 2.

4) The right hand hole will be too close to track 'p' for comfort so cut out a

small section of this track with a sharp knife and replace it with thin
insulated wire to avoid pin 'C', diagram 3.

5) Cut tracks 'a" ‘and 'b’ near pins 'A' and 'B'.

6) Connect pin 'B' to pin 'E'.

7) Connect pin 'E' to the free end of track 'b'.

8) Connect pin 'A' to pin 'C' and pin 'D' to the free end of track 'a'. These

two wires should be lightly twisted together to reduce noise.
If you have done it all correctly, the new shift key should work.
¥d. Please note that Nascom keyboards carry a one year guarantee from Licon, which

is nothing to do with Nascom. The above modifications will wvoid +the keyboard
guarantee.

SORRY.

CORRECTION : I/0 BOARD REVIEW

In the review of the Nascom I/0 board in INMC 80-1 (the last issue), it was
stated +that the UART did not have the ability to send and receive simultaneously at
different speeds. This was incorrect. The UART apeed select links allow different
send and recieve speeds to be used. Thia was an oversight on the part of the
reviewer, for which, we apologise.

Nascom have also pointed out the despite our INMC award for incomprehenaible
documentation, no complaints have been received. (Yet 11)

-23~-

- mﬂJ I SHIFT Key

Dungrome 1
Mo St K’.zl S M
F £ 0 ¢ 2
O O o O (&) RN OB &'
b bl
Dmﬂm-vw 2
(A Siafe
ey
| 2
[
CondD A

0%4,,,,.,‘ 1 (Mew wires shom thud)

-2~

Back to Basics

The other evening an envelope containing an article (and a Naspen tape of it)
was shoved through my letter box. The srticle was yet another review, but this time
on a most unlikely subject. A computing holiday '!! So if you have already recovered
from +this years holiday, and are thinking about next years, this might be worth
conaideration.

On Holiday in Basic by R. White

As a computer addict of some eighteen months starnding, +the thought of
spending & week away from the keyboard for a mere family holiday was indeed hard to
bear. When a fellow addict produced a brochure of 'Marlborough College Summer School
1980' all our holiday decisions were made in one fell swoop. The Summer School was
offering a range of courses to suit all possible interests: Yoga, Bridge, Swimming,
Painting, Welking, Languages, Philosophy, History and many others ... including
Computer Programming. The children were scon convinced +the 'Children's Activities'
were what they always wanted, while my wife realised at once that fthe 'Pre-history of
Wiltshire' had an irresistible fascination for her inquiring mind. Sc we went.

We arrived on a Sunday evening and installed ocurselves in our twin-bedded
room, the children being nearby in dormitcories. The accomodation was adequate if a
little wspartan compared with a modern hotel. The food however was excellent.
Breakfast, lunch and dinner were all served in the main c¢ollege dining-hall on a
gelf-gerve bagias, with an excellent menu at each meal. There were several bars
including one within the dining-hall itself which was about the only extra expense we
had during the whole week ~ absolutely everything else heing provided, including the
never-to-be-forgotten doughnuts served with morning coffee each day.

On the first morning the whole of the Summer School, about five hundred
people, essembled for a few minutes talk introducing the varicus Tuters, many of whom
were astaff at Marlborough College itaself. The computer programming course was to be
in the hands of the College computer System Manager, J. Marcus Gray, and the language
was to be Basic !

After introductions all round it hecame apparent that all sirxteen members of
the course were from widely differing age groups and intereasts. At least four were
2till in full-time study where they had picked up an interest in computing at school
or college and now wanted to learn more. There were two medical men, both G.P.s, who
were interested and even concerned as to how computers may invade their sphere. They
had no computing experience whatscever and had perhaps only read one of the books on
Basic that had been mentioned in the 'suggesed reading' list before the course. There
were two or three hobbyists like my fellow Nascomite and myself, plus one or two who
ran smell businesses enquiring into the possibilities of the machine for them.
Altogther we were a very mixed bunch. :

In the lecture room itself there was no sign of any computer - just desks and
& Dblackboard. There was one rather nasty moment when ocur tutor began to talk about
the college computer itself and produced from his briefcase - horror of horrors - a
ZX80 ! The thought of a week with a ZX80 between sixteen people seseesss Bubt this was
only to make the point to the inexperienced of us how small(!) the home computer has
already become.

The general pattern of the course was an occasional lecture with blackboard
and notes etc., and then adjournment to the college's eight-terminal computer for
practice on one's own with suggested experiments. There was always help available
both from our tutor himself and from his assistant, 2 very enthusiastic and helpful
sixth-former at the college. Thus there were two students per terminal and two
sources of nelp when in trouble - a very satiefactory arrangement.

-25-

The first two days of the course took us through +the =simple statements -
PRINT, INPUT, IF, READ etc., and a discussion of numerical verisbles and array=. We
two Nascomites found conaiderable difficulty in getting used to the rather intolerant
disciplinea of the mnulti-terminal computer after having been used to the screen
editing and other short-cut luxuries of our micros.

Although +the official lecture pericds ended at 4.15 p.m. we were often still
typing until dinner at 6.30 when we reluctantly broke off to eat and perhaps join in
an evening activity. This could have been a concert of music, a walk on the downs, a
guided tour of the College or, on the first evening, a sherry party. Generally the
evenings tended +to end in the bar, possibly satill tallking and thinking in Basic and
knowing that if required we could always usge the computer until 10.%0, usually with
help still available if needed.

By mid-week we were into strings and files. Here we had the great advantage
of having access to some of the College files already stored on disks. Thus without
having to type in anything except program inatructions we could practice Bubble
Sortd, make new files and investigate search routines.

All too quickly the week came to an end. By now we had filed away quite a few
interesting short programs which we were able to print out and take home for further
study. The very firat thing we each had had to do on that firat Monday morning had
been to write downh on paper our individual aim in taking the course. Mine had been
quite simply to learn to think in Basic without worrying about registers, bytes and
memory locations within the machine. At the end I did feel that I had achieved that
aim and had dore sc in a most enjoyable manner.

As to the rest of +the family, my wife is as hocked ¢n Avebury and Sarsen
stones and the like as I am on Bamic, while the children said their 'activities' were
just, "Brill"(iant). One thing we all shared at the end was tiredness but at least it
was coupled with a sense of achievment. '

Ed. We have saince heard that Marlborough College MAY be running comuputing
gourses in different levels of Basic and in another language next year. For details,
write to:

Marlborough College Summer School,
Marlborough,
Wilts. SN8 1PA.

Ads.

FOR SALE

Nascom 2 with 32K, built and fully working in a micro case. Naspen. Disagreement with
solicitor forces sale, Nascom hardly used. 400.00 ono. Phone ERITH 32835.

NAS-SYS 1 on ROM, straight out of Nascom 2. Have upped to NAS-S5YS 3. Full
documentation. No sensible offer refused. Phone PETERSFIELD 4059, evenings.

Nascom 2, 32K, ZEAP in EPROM, 4K Toolkit, runs 2400 baud. Manual, tapes and programs.
Keyboard case. 470.00. Can deliver West Country or London. Phone 0326-72207, evenings
or weekends.

Nascom 1 with NAS-S8YS and PSU. Purchased ready built 5 months ago, total cost 195.00.
Full documentation. Will accept 160.00 ono. Phone Brian Reece ~ Hornchurch 74388,

-26-

Z80 made simple

THE KIDDIES GUIDE TO Z80 ASSEMBLER PROGRAMMING : D. R. Hunt

Y S SN O I I I NI N N N M Y 2 O 2 2 S 0 T IO N R s m e

Part: The second. Things to do, and what to do it to
{Op-codes and operands)

By mnow, anyone who actually bothered to read part one of this series will (of
course) be fully proficient in the doubtful business of counting in HEX. Those who are
8till wondering about the necessity, need only look at the object listings of programs
which sometimes find their way into this newsletter to realize that they are missing
out on something by not understanding what it's all about.

By the way, to digress (so soon already), object listings are the name given
to those columns of HEX digits which appear when you use the Tab command on the
Nagcom. I don't know why it's called 'object', it doesn't seem important to know, and
I've never exposed my ignorance (till now) by asking anyone. The term 'object listing'
refers to the machine code instructions (in this instance displayed in HEX) +tabulated
in some form that the programmer can read (it may also refer to a form that the
computer can read). Bssentially, it is the machine code instructions to the compute.
It's not confined to +the Nascom form of display where each line starts with an
address, followed by eight bytes displayed as two HEX digits each. For that matter,
given that one byte (eight binary bits) only needs two Hex digits to express it, the
space between each comsecutive byte is not really required. Likewise, provided we know
where the atart address is, the address given at the astart of each line can also be
deleted. The result could be something like this:

4010 (start address)

DBCDF23F30FOCGDB0O217DODRO1 CACDH R

40300T2ABO4 T22AEATCY92AAR4T2B22AE

etc.
instead of the more familiar

4010 D8 CD F2 3F 30 FO C9 DB

4018 02 17 DO DB 01 C9 CD 5F

4020 40 30 03 2A BO 47 22 AE

4028 47 C9 2A AE 47 2B 22 AR
The first example is equally good 'object code', a lot more compact, but a darned
gight less readable. It's call 'Intel format' by the way, and is quite common in
Stateside computer magazines. Thank goodness it's not used much in this country.

30 what do these numbers mean ? Well to understand that we must first look
inside the Z80. Now for +those who don't know, the Z80 is what is known as the CPU
which means Central Processing Unit, and at the bottom of it, it's +this chip which
does the work. Despite the size and apparent complexity of the Z80, it really isn't a
frightening device. For a lot of purposes it can be treated as a 'magic black box', we
don't need to know how it d4id something, only the net result of what it did. With any
CPU, real understanding comes through practice and not 'boek learning'.

The second thing to realise 4is +that up till now we have generalised, and
talked of HEX and object code. From now on we are going to be apecific, and deal with
the 2780. Z80 inatructions mean something to a Z80, much as english means something to
me. {Don't believe you. Ed.) Portugese (any Portugese gpeaking persons amongst my
readers will, I'm sure, forgive the reference) is totally foreign to¢ me. The form of
letters used is, in the main, the same, and a Portugese -speaking person is a member of
the human race (very much closer related to me in fact than the relationship between
one CPU and another), but the language is different, and to me meaningless. In the
same way, if Z80 HEX code were presented to, say, a 6502 CPU, the 6502 would be
totally loat.

-2

Not all CPUs are all that different to each other (isolated by language),
there 1is some compatibilty in this world. An 8080 CPU and a Z80 for instance, may be
likened to someone with a limited and simple vocabulary speaking english to me. I
understand the words perfectly, but as the speaker only has command of roughly half
the vocabulary I have, it takes longer to get the meaning across. Contrarywise, when a
780 speaks to an 8080, its vocabulary must be restricted to the "intellectual level’

vl v OO0OU« Ow bewuaic Lvbk all v leclh cgude las Llig oo modallliige Willl S pracvice,
it 1is possible to determine which is good Z80 code from code for some other processor
or from rubbish.

Having said that this business ig not "book learning’ stuff, I must follow on
by saying that the Z80 Technical Manual is vitally important. Read and digested in
littie doses, it becomes quite understandable. If you read the Technical manual from
end to end, once, and understand it all, then =el} your Nascom and go and buy an IBM
270 instead, you obviously need something meatier to chew on.

The Technical Manual goez on about the registers and describes in great detail
how they are interconnected. Think of the registers as railway sidings, some comnected
to the two main lires, others connected to one or other of the main lines. The
Technical manual gives you a nice map to the whole 'goods yard'. On one main line
there are eight main lines running parallel and on the other there are 16 main lines.
Each s8iding has eight parallel tracks connected by points to the B wide main line,
whilst pairs of registers may also be connected to the 16 wide main line. Trains in
the form of eight wdgons each, one on each parallel line, move along the tracks of the
8 wide main line parallel to each other, and may be directed through points from the
main line into the sidings. Likewise, groups of wagons, 16 wide move along the 16 wide
main line, and may be moved to a selected 16 wide siding, composed of a pair of 8 wide
sidings. That's all the load (LD) group of instructions do. If we want to load the 'A'
register, eight parallel bits are placed on the (8 wide) date bus, and are directed
through switches inte the 'A' register. Similarly, sixteen bits of data may be moved
along the (16 wide) address bus to or from either the register pairs, or special
purpose registers wsuch as the Program Counter. There i=s one importent thing to know
about the load group of instructions though; when an instruction such as ID A,B (that
means load the 'A' register with the contents of the 'B' register) is encountered,
unlike trains, the contents of "B' is COPIED to 'A', not moved to 'A', s¢o the contents
of 'B' remains unchanged.

There are quite a number of registers in the 280, we'll start with just a few
of them. Perhaps the two most important are the 'PC' (Program Counter) register and
the 'A' register. Starting with the 'A' register, this i1s also refered to as the
'accumulator', for reazons I hope will become obvipus in a few moments. It is here
that it is all done, all arithmetic and logical operations are performed in the
accunulator. For instance, if we wanted to add two numbers together, we would put one
in 'A' and one in another register, =ay, 'B'. When the addifion is performed, the
answer will be in 'A' ('B' incidentally will be unchanged), hence 'A' accumulates the
answer.

The 'PC’ register is a special purpose 16 bit register, and its job is to keep
an eye on the address where the processor is to get its mnext byte from. In many
senses, the 'PC' register is purely automatic, every time the processor fetches a byte
(as it must do to know what to do next), the 'PC' register is automatically
incremented (increment means to add O1H to it) to the next byte. When the processor is
ready for the next byte, the contents of the 'PC' register are placed on the address
bus, and this forms the address of the next byte to be fetched.

-2 8-~

There is another apecial purpose register in this case uniquely associated
with the 'A' register, and this is the 'F' register, or 'Flag' register (also
occagionally called the Status Word Register). Back to the trains. The 'F' giding is
at the end of the 'A' wsiding (but also connected back to the main line). If, on
addition, there is a 'carry' from the 'A' siding, then the extra wagon is shunted into
8 specific 1location in the 'F' siding reserved for the 'carry' from arithmetic and
logical operations. So if our addition overflowed, then the '"Carry flag' would become
set, There is also a flag which will be set if the result of the calculation becomes
zero, this is known as the 'Zero flag'. There are four other flags as well, we'll deal
with them another time.

An important point has been made here, it's the flags which give the processor
its intelligence. By testing the condition of the flags a decisien can be made. For
example, suppose we wished to count down from 40H to O {remember the 'H' means HEX).
We could load 'A' with 40H, and then go into & simple loop which subtracted O1H from
the accumulator then tested the flags to see if the 'Z' flag had been smet. If the 'Z'
flag was still unset, then the program would go through the loop again, round and
round until such time as the 'Z' flag did become set. Enough reading, let's prove it.
We'll write a 1little program that does just that. T expect you to read the Software
Manual and discover how to use the 'M' command, and I'll write the code in +two ways,
firstly as an object code listing, and secondly as an assembler (or source) listing.
I'11 explain a bit as we go along, but not too much (I believe in making my readers
work, I had to learn the hard way, so why not you). We'll only count from tOH to O
otherwise it will become tedious.

Object code
0C80 3E 10 3D 20 FD 3B 22 00

Source code

0C80 3E 10 1D A,10H Load the 'A' register with 10H

oc¢s2 5D DEC & Decrement A, meaning subtract 1

ogs3 20 FD JR NZ,-0%3H Jump no zero back three places, relative to the next
instuction (I'1ll explain later)

ocss 3E 22 LD A,22H Load the 'A' register with 22H

ocaT 00 NOP Do nothing (for enthusiastic key pressers)

Now what we have s=aid is load the 'A' register with 10H. Decrement the 'A'
register by 1 (decrements are always by 1). Test the 'Z' flag, and if this says 'Not
Zero' then move back three places from the start of the next instruction.

Why from "the start of the next instruction”™? Well, when the processor meets
an instruction the firat thing that instruction does is to tell the processor how many
bytes in that instruction. There might be up to four bytes in an instruction. The
procegsor has to read each byte in turn, and by the time it has done this the 'PC’
register has already been incremented so it is already pointing +o +the next
instruction. Don't forget it's the job of the '"PC' register to 'keep tabs' on where
the processor iz to get the next byte from., So in the case of a jump 1like this, the
'PC' is already pointing to the next instruction by the time it discovers it should
have in fact gone backwards not forwards. We didn't deal with negative HEX numbers in
part 1, just take my word for it FDH iz actually -03H. If the 'Z' flag =said the result
was zero, then the program would 'drop though' +the jump dinstruction %o the next
instruction {which it was alrsady pointing at), which in this inetance is load the 'A'
register with 22H. I chose 22H to prove that it was the next instruction, and not =a
magic number the CPU thought of jtmelf. You might like to change the number just to
prove I'm right. The NOP (No OPeration) at the end was thrown in in case the 'Enter’
key was pressed once too often., This program has no 'END', so immediately the
proceasor found the next byte it would do unpredictable things, as we haven't
programmed beyond this point. The memory would be full of garbage from the time the
computer was turned on.

—-29~

Now having got the program in uging the 'M' command, go and read up the 'S’
command. Notice how the register display is presented when using single step. It might
help if you stuck a piece of masking tape acrcss the top of the monitor screen, with
the registers written in order across it, saveés continually refering to the bock. Away
we go!! Type S 0C80, and provided you did it all right, then a register display will
appear on the screen. Whats more, the 'A' register will contain 10H and the 'PC' will
be pointing at the next instruction (0C82H). Hit 'Enter' again, and the 'PC' will
advance one, pointing +to the next instruction, and the 'A' register will be
decremented by 1. Also at this point the flags may have changed (they were in an
indeterminate state when we started), now they definitely show the result of +the
decrement. Hit 'Enter' again, and the 'PC' will have skipped back to the address of
the decrement instruction ready for the next time round. Keep hitting the 'Enter' key,
watching the 'A' register and the flags. When the 'A' register goes %o zero, notice
the flags change, the 'Z' flag comes on. Take one more step, and notice nothing
happens, but this time the 'PC" inatead of pointing to the decrement instruction, now
points to the next imstruction, the load 'A' with 22H. Nothing happened because the
processor still has to perform the test on the flags. You know they've changed, but
the processor still has to test them and jump (or not jump as the case maey be). One
more wstep, and lo, the 'A' register contains 22H. There you are, your first assembler
program, It didn't do much, and it's only safe to wsingle step the program, as it
doesn't stop when its finished, but you must have learned something. If you didn't
understand what happened, perhaps a Basic aralogy will help.

10 A=16
20 A=A-1
30 IF A<>0Q THEN 10
40 A=34

Having manipulated one register and seen the effects. Two things remain to be
explained in this episcde. The first, a brief explanation of some of the other
registers, and secondly, how the processor knows what %o do.

The other main registers of the Z80 are the 'B', 'C*', 'D', 'E', 'H' and 'L’
registers. As mentioned previously these 8 bit registers are also organised ao that
they may also be loaded as pairs so that each of the 8 bit registers paired together
give the following 16 bit registers, 'BC', 'DE’ and 'HL'. The 'A' and 'F' registers
are also paired together, although because of the special nature of the 'F' register,
the 'AF' opair can not be treated as a single 16 bit register. Presumably there is no
'G" register because the name of the other of the pair haa already been allotted to
the 'F' register.

When treated as 8 bit registers, the registers act as temporary storage places
for data or can be used as counters. They also have limited arithmetic capability,
they may be incremented and decremented, and major changes of status will affect the
'F' register just like the 'A' register. There are perhaps more 8 bit registers than
would be really necesmsary, (memory locations could be used in place of registers), but
as it takes the processor markedly less time to get frequently used data from an
internal register, using them speeds things up.

Perhaps more dimportant is the 16 bit capability. Now addregses are 16 bits
wide, and the 16 bit register pairs have access to the address bus. The 'HL' pair acts
rather 1like the 'A' register, in that limited arithmetic can be performed using it as
a 16 bit accumulstor and the results affect the flags accordingly. This means that
addresses can be calculated directly which saves a lot of time and effort. The
remaining registers, the 'SP', 'IX' and 'IY', 'I' and °‘R' all perform sapecial
functions and we'll make use of them as we come to them.

Just in case the above set of registers aren't enough for you, there is also a

complete duplicate set of the main registers which may be switched in at will. Phewww
I

30

Lastly we come the title of this piece. Op-codes and operands. How does the
processor know what it is about ? Now we've talked about the 'PC' register pointing at
each byte of the program in turn. Provided the 'PC’ is pointed at the first byte of a
program, and provided that program is correct, it can't go wrong. It works like +this:
each instruction may be between one and four bytes long. The. first byte contains
important information for the processor, this byte is called the 'operation code' or
op~code for short. Firstly, it tells the processor how many bytes there are in the
instruction. Then back to our railway enalogy, it sets the points. This first byte
operates the switches which route the data round the processor. In some instructions
(the 4 byte ones), the op-code is two bytes long as there is too much for the op-code
(or instruction) decoder to handle at once. '

The bytes that follow are known as the operand, that is the bytes that need to
be worked on. In some instances the operand may be data, like the LD 4,10H instruction
(above), the 10H is data. In other instances the operand might be an address offset
like the JR NZ insetruction. In many instances there is no operand at all, as all the
information is implied like the DEC A instruction, where 'A' is implicit within the
instruction, and a decrement simply means subtract 1 from it. The processor is clever
enough to handle all that in a 1 byte instruction.

It can be seen that if instructions are given to the processor properly, then
by the time the processor has finished with one instruction it is already pointing at
the next (or has been pointed at another by a jump or call instruction). More often
than not, with novice programmers, things start going wrong when a Jump eor call goes
tc the wrong place, or the program is allowed to run on into a data or unprogrammad
area. The poor little processor doesn't know something is wrong, it faithfully carries
on and tries to interpret the instructicne it finds. Suppose (because you programmed
it wrong) a jump instruction sent the processor to the middle byte of a LD HL,0123H
instructicn. That looks like this:

21 23 O

Inatead of loading 'HL' with 0123, it will first increment what is already in 'HL'
because 23H is +the instrtuction to increment 'HL', then, geeing O1H, it will think
that that is the first byte of a LD BC instruction so the next two bytes will
interpreted as the operand for the LD BC instruction, which they are not. We needn't
go on, the program is blown already. From then on the processor will run wild,
actually, ‘'wild' is the wrong word. What the processor does is quite logical, if you
could only find where it had gone, The processor was only deing what it was teold, it
can't know thet that is not what was intended. Really it's the program which ran wild.
The usual result of all this (determined by Sod's Law) iz that if the pregram was not
saved on tape, it will write rubbish all over it, and then try to execute the rubbish,
and 80 on, and so on. This is what is known as a 'program crash', and one thing will
be impressive, that -is +the speed at which it can all happen. After heurs of
painsteking typing putting a program in, there is nothing so humbling ag to conduct a
pestmortem on the program, that, because of a single typing error the processor
mznaged to completely 'scramble' in a few thousandths of a second. You wouldn't have
had time to think about hitting the reset button, yet alone do anything about it.

So what have we learned. Object code listings. A glimpse at the insides of the
Z80. How the registers are arranged, and op-codss and cperands. In the next episode we
will go on to discuss the workings of the other registers, and take a closer and moere
detailed look at some of the instructions.

One final bit of encouragement. This stuff is not easy, it's rather 2like
walking through a fog, and not even knowing where you are supposed to be going. Even
now, if you are still totally lost, just keep 'plugging away at it'. In my experience,
and T am certain I am not unique, at some point, after one or two false starts, there
Will come a small glimmer of understanding. Suddenly everything becomes clear. All the
facts fall into place, and although you may be wrong about some of the details, the
"core' or 'heart' of the problem is exposed and to your surprise, you will find that
you had already learned most of what there is to know. You will kick yourself for not
having grasped the concepts earlier.

Assembler

ZEAF Z80 Assembler

sooon

0ooon

pooo-

poao
0000
0oeg0
0000
0000
Gooo
goao

0000
0000

0000

0000
au0o0
Jo000
oooo

0000
0400
0000
0000

0028
0030

00sE
0066
0047
0048
0069
00&A
D05k
ap7e
007k
0d7C

poo0g
001k
wone
0oon

ocog
0COE
0eC10
0cz29

(IR R
8020
0030
06049
00350
0040

30890
no4go
0100
0110
0120

0140
61350
0160
G170

0i0
0200
0210

0230

06250
0260
0270

0220
0300
0310
0320
03390
0340
03590
03460
0370
0380
0370

0410
0420
0430
0440
0450

0470
0480
0490
0500
0510

0530

-3]1-

~ HSource Listing

)
X
X
X

LOAD
(with

AND TAR

163 4433580885595 8 848844

X
- X

checksuims) X

n

WE R e e e e

L

e W W W

L+ 2 3333858593985 8584544

Irntenderd for use with later revisions
of NAS-5YS, where the “L’ command has
been omitted, and the ‘T’ command has
been smmended such that checksums are

not output.

These routines are internded for use,
whers programs printed with checksums
are to bte re-entered wsing the L7
commanid.

These are revised versions of the code

trimg.

.

T"Fs
.

line.

+

|
$ used in NAS-8YS 1, and are totally
3 relocatable.

DRG0
+ Restarts used in NAS-SYS.
FRS EQU 28H ; Frint the foollowing s
ROUT EQU 30H § Frint a echaracter.
3 Rouwtines wsed in NAS-S5YS.
MRET EQY 5BH ; Return to monitor.,
TECDI EQU &46H § Display HL snd add to
TBOGDZ EQU &7H § Displawy A and add to C
EZHEX EQU &8H ! Display contents of A,
SPACE EQU 49H ; Output a space.
CRLF EQL 44K 3 Outpul a carrisue rety
ERRM EQU &6BH §} Fut out *Error’ messag
RLIN EQU 79H § Load limne into ARGs.
BLINK EQU 7BH 3 Get sn coharacter in A.
Ccros EQL ZCH 1 Phack up first char on
3. Sumbols used by NAS-5YS,
ES EGU 08H ! Backspace symbol.
ESC EQU 1EH } Home cursor,
Cs EQU 0CH ¢ Clear scoreen symbol.
CR EGY 0DH § Carrisge return sumbol
i NAS-5YS workapaces used
ARG1 EQY 0COCH
ARGZ EQU 0COEH
ARG3 EQU o0C10H
CURSOR EGU

0C29H

0K 00 00300 030K D00 K DI 3030 200 00 200 3 HC SN0 280 K 3K 2 6 2K 0K 0K

oogo

0p00
0003

0007
0008
000A
OB0E

ooon
GOGE
G011

6013

8oLy
0016
anly

DOLE
001D
00LE
0020
0ozl
0023

0025
151141
0028
0024

0000

0000
800y

0003

2H0EDC
EDGELO00

B7
EDS2
19
3806

EF
ZECGDOO
DFSE

EF
202000
DF 66

0608
7E
DE&Y
23
DF &9
10F9

79

DF &8
DF&h
18DE

EF
0Coo

DE7E

0550

0570
0580
0590
0600
0&l0

0630
04640
04650

0670
0480
0670
0700
0714

6730
0740
0750
0769

6780
6790

0810
0820
0830
0840

0860
08790
o880
0890
0200
0910
0920

1940
02s0
0960
0970
0980

1000
1020

1640
1030
10460
1070
1040
1490
1100

1120
1130
11440

11460
1170

-32-

ORG 0

The TAE routine is executed from TAE,
having activaeted +the appropriste X’
rouwtine. The *from’ and ‘to’ arguments
follow the execute address. The data
output scrolled on the screen.

Wl W e e

} Get *from’ and *to’ into HL and DE
ThHE LD HL., (AREGZ)
LD DE, (ARGH)

3 Test if HL < DE, if so comtirnue
TE1 OR A

SeC HLy DE

ADD MWL, DE

JR £ TR2

3 HL = DE, so must be end
RST FRS
DEFE ",,CR,0 -
SCAL MRET

F Imitialize checlksum
TEZ L.D e 0 :

; ODutpout address
RST FRS
DEFE " " ,40
SCal. TEBCD3

7 Output 8 bytes
LD B, 8

TB3 LD A, (ML)
sCal. TBCDZ
TINC ML
SCaL SPaCE
DJINZ TE3

7 Output checksum
LI A, C
stCal. BZHEX
SCaLl CRLF
JR TE1

0000 RS DK 306 D 0K 0 6 3K 5K 30 2 205K 0 0G0 O K N0 N B K

ORG 0
$ The LOAD rouwtine execwtes at LOAD, and
} data is impuwt from the kegboard i the
i TAE Tormat, terminated with 38 ‘newline’.
y ANy error will result in o 2n *Error”
} messaqge, Correct entry will clear the
¥} lime leaving only the last line address
7 entered for easy reference.,
y Clear the scoreen
L.0AD RST FRS

DEFE CS,0
3 Get an input
LDL SCAL. ELINK

0005
0007
0009

000k
0oon

GO0F
6011
D013
DaL%
aol7
Go1y
GOLE
001D
Do1F
0021
0023
0025
doaz
joze

Ga2e
0uEh
i
0030
0432

U034
G037
0038
003
RTEEYS
GO3c
003k
0037

004%
6044
0047
004%
004h
004k
004c
004D
004K

anso
0051
G053
01054
0058
115A

E&7F
FEZE
2857

FEOD
2818

FEOS
2614
FE20
2810
FES0
BEES
FE3A
3808
FE4]
38E 0
FE47
30D
F7

1809

26290C
DF7C
EE
LF7Y
3828

216000
aF
0412
Bé

23
108G
Bk
2008

2A0COT
11L0EQC
0508
14

77

23

13

13
10FY

EF
1800
ZA0COC
DF&é
DF&A
18A7

1190
1200
12140

1220

1240
1250

12460

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420

L440
1450
1460
1470
14890
14910

15170
1520
1530
15440
15090
15460
13570
16540
1590

1610
1620
1430
14640
14650
1660
1670
L&680
1690
1700

L1720
1730
1740
1750
1760
17740
1780

=33

! Strip parity,

LDZ AND
CF
JR

i If 8 CR,
CP
JFR

ZFH

it
+

2 LDE

CR
Z LDb4

} Validsate input,

CP
JR
CP
JE
CF
JK
CF
JR
C
JR
CF
JR
LD3 RET
Jk

y Convert armd check the Line

L4 i.0}
SCat
(394
sCal
JR

;7 Checlksom
LD
XOR
1.0

L% YN
TNC
DJNZ
(M3
B

i Copa data
LD
L
LD

L& .0
LD
INCG
ING
ING
DJINZ

¥ Clear line except

RGT
DEFE
1.0
SCAL
SCAL
JR

BS

Z LD3
Z LD3
IID
LD
G103
Ilﬁ
Gl
llc;

NG 1LD1
ROUT 3
LD

then if “0”'

ther end of lime,

allow BS,

ard .
sa to L.D4
SFC an 0 - F

Print the character

HL., (CUREOR}

CROS

BE s HL

RLIN
C Lb7

HL, ARBG1

A

Be 3EH
Ay CHL

k.

)

Lo memory
HL., (ARG1)
DE, ARGE

By 8

A, (DE

(HL. Y,
HL.
DE
DE
LDé&

FRS
ESC, 0

}
A

HL., (ARGL)

TECD3
CRLF
.01

atidress

-34-

1800 } BEad data, put error messdae and scroll

005C DF&Y 1810 107 SChal. SPALE
GOSE DF&E 1820 SCAL ERRM
0040 18A1 1830 JR LD3%

1850 3 End
062 F7 1840 LD8 RST ROUT
0043 DF7E 1870 HCAL BLINK
0085 E&FF 1880 AND 7FH
0067 FEQGD L1890 Cr CR
D049 Z09H 1900 JR NZ LDZ
06l F7 1910 RST ROUT

1930 } Return to monitor
DO&E DFSE 249 S4AL MRET

1940 3 END OF LISTING
ZEAF Z80 Assembler — Sumbol Teble
QCO0CH 0480 ARG JC0EH 0490 ARGE
0C10H 05060 ARGS D0&BH 0330 BIZHEX
00ZEH 0380 ELIMH GOOBH 0420 BS
007CH D390 CFDS GOODH 0450 CR
00&6aH 0350 CRLF N00CH 0440 S
BUZ9H 0510 CURSDR GOA&EH 0340 ERRM
D01EM 0430 ESC 0003H 1470 LD1
000%H 1200 LDZ GOZ7H 1410 1.D3
GORALL LAw0 i OGO L8350 LS
0494 1850 LDa DO0GCH 1810 LD7
DU&HEH 1860 1L.DE HO00M 1230 L.0OAD
0DSEH 0300 MRET 00284 02460 FRS
D07%H 0370 RLIM I3OH 0270 ROUT
GueYH 0340 SPACE GoOOH ND&a4t TAR
goo7+ 0680 TEL 0013H 0790 TEZ
G01bH 0880 TRS3 D00467H 0320 TRCDZ

bu&eH 0310 TECDI

BASIC

10 REM 3NN K A K K OK
20 REM X
30 REM ®
40 REM *
S0 REM ¥ By Jobn Waddell
¥
*

CaLENDAR

EE N

60 KREM

70 REM

g0 REM

90 REM xx

100 FREM x% Imitislise
110 DIM NLLE)

LZ0 FOR XT=3328 T0 33346 STER ZIREAD JIDOKE T,JiNEXT

130 FOR X=1 TO 1ZiIREAD NOIY INEXT

140 GOSUE 730

150 KREM wx

1460 REM *x Restart here and qget year

170 N(2)Y=2B8IRESTORE 940

180 PRINT “"Hhat year do wou warst "%

140 TF F=l THEN FRINTIFRINT TAB(3)IV"{YENTERS for mext month)
200 PRINT "7 "3

210 GOsSUE 780

220 IF F=0 AND X$="" THEN 210

0K KB 0OK DK ACN 3OK OKOHK

-35=

A0

" ~BAQWANDQ IBQUBACN YIYQ 094 INIHAITA(BZ 3 L 4R (HTYAVL INIHALI0EL ANSOY D&%

4200 JAqWaldagfasabngtRTne Bieg 01546 IXANT$W aQvadiu 04 I=M M0d o684

AUNPFREWF TTAdgFUD I FRienagayRasenuep gid{d 0ké SHUTHEIY LUTJId FuLunw peaM xx WIM 075
BULLOW L0 SSWEN xx WIM 184 ¥x WAM 095

XK W3IM 026 LRL/QYINT-Q=0 068

TESOEFIE IETEYIEQE IE AR TIEfRZYTE Y1d 014 Z OInpow Rg a820p8M xx WIN 0bS
SULLOW JOo sULBUSTT xx WIY 006 XX WIY fES

. ®x WHAM 048 hxmz (PIN+O=0IT~W 01 T=D MDA 0205
EZ8ET-*H995-NLEE'S9902-4TTLTE VIV 088 05% NAHL T=W 41T 471%

2420 3ndUt 2p0d AUTUISW xx WIM 048 . Uluow JO RER 1SJT4 DUTY ¥x WIAM 005

®x WIM 098 X WAY §4b

, LXANIE-M=0 958 6Lt owaw"ﬁlouawamﬂ ~A=h 08¢
CI—($IONT VSIS LAT =T (T IEHHD INTIMS 068 . DTS NIML 00T=xA AT 0/%
NMOLIMANTIMALLXANE (I $MHIF S T=$T (I SMHD INIMA 0ES8 ‘ (A CT-AYYANT+A=0 09F
(& NIHL £5<T €0 8k>T 41T 028 wcammﬂ 23R adaum DUTYd xx WIM 10k

NETLIMINGHL €T=I 4T 018 XX WAM ik

0+8 NIHL 8=T 4T 008 SZ=(7 N (EL

062 NAHL,u=$1 ANV 8=I 4Y1(0)IMEN=T 064 094 NIHL D0TX(00T/AYINI=A AT 02

L 01 T=M MOd:8ZEE 00T AHOQL..=%$1 08 . S 0EF NAHL 00b=A JT 01b

HETdsip @ 918PTI8A f1NduT U8 199 xx WY 057 09 NIAHL L (bAAIINIC=A 4T 004

®E WAM 097 06€ NIHL 00k<A AT 00b~A=A 0&E

NMOLAMIAXANI (LTSI $ATHI DY T+9708 304 057 " TA=AlT=d4 (8E
($LINAT 0L T=T MOA:LNIMA4:87D0 062 00F OINpDW Ag Jeaelk 2oNpaM xx WAM /8

SOURUAURURURULIY ¢ O N 3 T ¥ 20194 ATIYATYATOATYATYN =6 L 0L XK W34 098
\J&dﬂa dn 3nd pue UasLLs JBST] X WIM 024 0ZE OLODIWE,LUILOW OU ST adaul, INIM4 00

*x W3AM 0174 08 NIHL €TxW (ONY 0<W 41 D48

.%d.&fﬁ DT DAO0DTINTHAIININAL 00/ CEINTIWA=KWIINIMNAI 08, 3NsS032 dEE
T O IXANTZ+X=X1 NI 049 4§, i (0928 7 = 084 4T = HEP) UpoWw UYITUM, LNING 0ZE

| ~03MNT 2?5 fOLX3N 089 UAUOW 339 xx WAM 0T
{4 v LNTMA 029 xx WIM DOE

08% OLOSTE. Wi LNIMd 099 08T QI00:LINIMG 042

G689 010534, Wi, o LNIMA 699 wt OGNy 25T L0 FOLLBUTINON) ZACT JB1LE,, INIM4 082

099 NIML 6<7 41 09 w— RTUD JEPUBTED UEIJOBaUY *AJI08,, INTMNIL0=4 D7

007 N3HL (WIN<T 4T 029 0ZE NAML Z84LT=<TA JdTi{$I>WAH=TA 092

049 NAHL T ATi0-P+X="117 0L T=M 404 079 0BE 01095 T+KW=W D5

§(98YL INIHAI? 0L I=T MOJ:0=X 01 I8 OL0O: T=WET+TA=TA zmIH Z2T=W 3T 0T

INTMJ W88 TJd4 Ay RaM any uol ung, (%L INIMA 009 B9 WNAML o246 4TI LNINAG 08T

-36-

Schizo RAM

NAS~SCHIZOPHRERTA by M. Kuczynski

Having bought and constructed my Nascom 2, it worked first +ime without a
single fault ... or =so I thought. Basic gave me 16067 free, and all my small Basic
programs worked as well as T wrote -them. Then one day INMC 5 arrived, and in it was
the program Eliza. About halfway through typing it in, the Nascom 'hung up', so I
pressed reset, warm started Basic and proceded to LIST the program. As soon as the
program listing reached the point where it had 'hung', the screen filled with rubbish.
"Ah", I thought, "The end marker has got lost, and the Nascom doesn't know where the
program ends.".

I aiways heed the advice of Lawrence the Long Haired Wierdo, =0 foriunately T
had saved most of the program on tape already. I reloaded, and carried on from there.
At exactly the same place, the same thing happened, time and again. "Damn, ‘'memory
plague'." I thought, but it didn't behave like 'memory plague', as one of 'plagues'
symptoms is that it happens randomly, and anyway, the thought of having {0 =tring
resitors and wires over my memory did not please me. Hours later after trying
everything from changing clock speed to swapping memory chips, I had got no furthsr.
So I did what I always do in desparation. I hit reset and 'Tabbed' the memory. The
endless rows of Hex digits marching up the screen are very =soothing to shattered
nerves. 0dd ?7 Sections of code written in page | of memory were appearing further on
in memory. Suddenly, all became clear, somewhere along the line the memory was being
decoded as two parallel blocks of 8K instead of a single block of 16K. In other words
my RAM had schizophrenia !!

Checking +through +%he pcb revealsd a trdck with a piece missing from it. I
scraped away the green resist and carefully soldered a piece of fuse wire across the
break. (Ed. BEcolit asilver base paint is also very good, and no heat to damage the
tracks.) On testing the board all was found %to be perfect. I have since heard of two
other Nascom owners who have experienced this trouble and in each case the fault has
been a broken track adjacent to pin 7 of IC35. Perhaps a duff batch of boards?

The moral of the story is, to check your Ram card thoroughly for address 'wrap
round’ and other faults before believing it is in perfect working order. (Ed. The
memory test in the new RAM (B) documentation does just this, but beware, in early
issues there was a typing error in the object listing around address ODODH, s=so check
against the source code given.)

) 7406

5V RAIL
0V RAIL

I3

o

FAULT

-37-

Strm§s
e have recieved the following article from Dr. Michael Hendry, he passes
some nice remarks about uz lot at the INMC (modesty never was one of our better
virtues), endorses our comments about reading the manuals, and passes & message +to
those in Liverpool (LSG issue 8/1 p36) that, "POKEing isn't everything; the POKE they
suggest is already there as the WIDTH command in Basic.” Me also comments that if
anyone is throwing away a NASPEN and a golfball printer, he could find them a nice
friendly home. He should be so lucky !!

The Variable Protector by M. D. Hendry
===
Nazcom owners with Bamic, who want to process string data will no doubt
recognise the scenario. '

The intrepid programmer has just typed in 200 names and addresses, and called
the alpha-sort routine, which he has checked with a few names while writing the
program. To his surprise, it won't handle 200 names, but he apots the bug and
corrects it at once. He calls the alpha~gort routine, and congratulates himself on
how fast it now is but because he re-RUN (ran) the program, Basic has destroyed
all the data for him !!

Simply dumping the whole Basic program and data section of the memory on to
tape does not help, as the Basic program can still not be modified without
re-initializing the various pointers, and there is no provision for SAVEing string
variables as there is for numeric variables. Tt is posaible to use a subroutine to
convert each string into a numeric array, which can be SAVEd and LOADed by Basic, but
this takes a long time, and is error prone, because of the need to atop and start the
tape under program control. You see, Basic indulges in a periodic ‘'garbage hunt’,
which may take ten seconds or =0, and you don't know when that will happen.

The following short program illustrates another approach, which involved =&
little detective work into the Basic interpretpr's use of workspace, and of available
RAM. The user's Basic program isg stored from 10F9H upwards, =and is followed by a
table of variables, numeric variables first, then string vaeriables. The strings
themselves are saved at the top of memory, and the string variable +table comprises
pointers to these satrings. Between the table and the astrings is a free section of
RAM. As & program ieg entered, the variable table is ghifted towards the strings, and
as strings are encountered they fill the memory towards the variable table. Should
the uaser try to make the two overlasp, an OM message will be printed, unless Basic can
make more string space by disposing of unwanted strings (a garbage hunt).

This empty RAM between the table and the strings provides the answer +to the
rroblem. The program copies the table to the top of RAM, just below the strings. The
Bagic program can then be modified. When the modifications are finished the program
copies the table back down intc the new position above the end of the user's program.
Care must be taken now, not to use the RUN commarnd, but to GOTO a point in the
program after all +the array dimensions have been declared. The former zeroes all
variables, a mistake in the latter will result in a PD message, signifying that there
has been an attempt to redefine the dimensions of a variable.

Once the various workspace pointers are known, it is not hard to use them in
a program, and the source listing is (I hope) self-explanitory. Note the use of RST
18H, the NAS=-SYS subroutine call facility to call the NAS-S5Y3 'I' and '2' commands
(intelligent copy and Basic warm start respectively).

With this program to hand, the user can simply dump the whole Basic program
and its associated string files to tape using NAS-SYS, knowing that he can later make
modifications to the Bazic program, or even manjpulate the seme data with another
program.

(Ed.

-3

This program hag been assembled using the MACRO 80 asaembler, watch out, two

byte address operands appear as you would read them. Don't forget that when entering
code, two byte operands are entered low byte first, ie:
printed below.)

0000

0018

1006
1008
10DA
10C3
on8o
oDs2
0D84
QD86

0DOO
0D0%
oDot
QD09
0Doc
CDOF
Ob1t
oD14
oD
oM A
OMB
OD1F
oD21

24
ED
ED
22
2A
ED
22
2A
22
23
BED
ED
22

in reverse

order to that

VARPRO the variable protector

MACRO~80 3.35 Page

title VARPRO the variable protector
subttl Version 1

s we

T B T s am

- we

MY wa we_we ey

scal aqu 18h

var equ 10déh
$var equ 10d8h
ramio equ t0dah
ramhi equ 10e%h
vari equ 0d80h

by M. D. Hendry : .

Re-assembled, MACRO 80, D. R. Hunt 06.09.80

This program is for use with Nascom ROM .
Basic and runs under NAS-SYS.

It allows +the user %to save variablea in RAM
and recover +them after altering a Basic
program, which must be re-entered by (eg)
GOTO XXX, where line XXX occurs after -all
DIMensions have baen declared.

Entry at ODOOH for save
Fntry at OD30H for restore

No check 1ia made for memory overflow, so do
Y=FRE{A%) +to force a 'garbage hunt' and
PRINT X to find out number of free bytes
for additions to the Basic program. Then call
MONITOR, E OD30, and GOTO XXX.

aseg
« 780

Subroutine call

Ptr. to var. tab.
Ptr. to strings

Ptr. first free byte
Ptr. laat free byte
New loc. of var. tab,

e wa wE el wE s wd e

varl equ vari+2 var. tab. length
nvarl equ vari+4 pum. var. tab. len.
ramhil equ vari+é Top of var. tab.
org 0400h
10D8 gave: 1d hl,($var)
4B 10D6 1d be,(var)
42 sbec hl,be
ong4 1d (nvarl),hl
10DA 1d@ hl,{ramlo)
42 gbe hl,be
oD82 1ld (varl),nl
10C3 1d hl,(ramhi)
0D86 1d (ramhil),hl
inc hl
4B QD8Z 1d be,(varl)
42 she hl,be
[0)31514) 1d (vart),hl

0D24
oD27
0D2EB
oD2c
0D2D
OD2E
OD2F

0D30
0oD33
0D36
0039
OD3D
OD3F
0D42
0D45
0D49
0D4B
OD4E
0D51
0D55%
0D56
oD57
oDsh8

Macros:

VARPRO the wvarisble protector
Veraion 1

24
ED
F
43
DF
H5A
00

24
22
2A
ED
ED
22
2A
ED
ED
22
2A
ED
oF
49
DF
54

10D6
5B 0D8O

ODS6
10C3
10D6

4B OD84
4A

10D8
10D6

4B 0D82
4A

10DA
0D80

5B 10D6

ratr:

VARPRO the variable protector
Veraion 1

Symbolas

$VAR
RAMLO
VAR

1018
10DA
10D6

NVARL
RSTR
VAR1

RAMHI
SAVE
VARL

0D84
OD30
oD80

No Fatal error{s)

TODOO OD6C

0Do0
0DO8
oMo
o8
oD20
on28
0Db30
on3a
0D40
0D48
0D50
0D58

Ed.

completely automatic.

A
42
42
86
42
5B
24
10
D8
oD
oD
54

It occura to us that very little work need be done to make
The answer to the 'string save' problem may be found in this

D8
22
22
0D
22

86

ED 4B
10 24
ED 4A
ED 5B

00

80.0D

D6 10
DA 10
€3 10
82 0D
D6 10
DI 54
10 24
ED 44
ED 4B
10 24 80
DF 49 DF
00 00 00

24
OB
2F
8F
1B
TR
EF
77
FF
4F
9F
B2

10
B84
82
23
80

ED 4B
oD 2A
oD 24
ED 4B
0D 24
DF 49
22 C3
84 OD
D6 10
22 DA
D6 10
Co0 00

ED
ED
22
ED
ED
0o
D6
22
82

0D

00

-390~

MACRO-80 3.35 Page

1d hl,{var)
1d de,{vart)
rast scal
defb "I"

rat scal
defb "Z"
nop

1d hl,{ramhit)
1d {ramhi),hl
1d hl,(ver)
1d be,(nvarl)
ade hl,be

1d ($var),hl
1d hl,{var)
1d bo,(varl)
ade hl,be

1d (ramlo),nl
1d hi,(vart)
1d de,(var)
rat scal

defb III"

rat scal

defb "2"

end

MACRO-80 3.735 Page

RAMHIt 0OD86
SCAL o018 -

10C3
0Do0
ong2

1e1

3

this progranm

way. Neither would it be too difficult to turn it into a Basmic module that could
provide a 'string save' and 'string load' within Basic.

-40-

Reviews

Software Review by R.0'FARRELL

ERASIECSTRETREEE N

INTEGER PASCAL:Initial impressions.

From: Datron, 2 Abbeydale Road, Sheffield
Cost 35.00 plus VAT

This compiler may well be many wmicrocomputer users introduction +to the Pascal
programming language.

It comes in a number of versions which are gpecific to the monitor you use. My copy
was designed to run with Was-Sys 1, and in consequence there may be minor differences
in the monitor deperndant routines - e.g. the Nas-Sys on screen edit, which 1is not
available under the other monitors.

The program is supplied on a tape, recorded in my case at 300 Baud CUTS, using the
Biock routines rather than the Tabulate format. It is designed to load at 10004, and
takes some considerable time to load, occupying memory up to approx 3200H. It contains
within it & text editor to allow you +to build up the program which you wish to
compile, This test editor is idiosyncratic (that is, it's not like any text editors I
know), and takes getting wused to. It allows =a program to be built up, a line
displayed, or deleted. Tt also automatically renumbers the lines of the program when
instructed, and has the ability to output a program listing to the VDU or to a
printer. It can alsoc save a program on tape, and read it back in. Bach line must have
a number, but the number does not necessarily put the line in its correct position in
the buffer - this is done by a locaticon pointer. Any corrections have to be made by
either retyping the line, or by using the Nas Sys on screen edit.

The editor needs each action to be preceeded with a command letter, and the location
of the line pointer decides where the line you have just typed/replaced/deleted is (or
was). The editor works fairly well, but I feel that more work could be done on it, *to
bring it more towards the way a Basic interpreter builds up a program, which I think
would be more familiar to most users.

Having entered the program, the Pascal compiler having been started by +the following
command : :

B1000 BUFFERSTART BUFFERLENGTH

then you can try a compilation. This you do by using the "C" commard. When entered on
ite own with no ancillary parameter, thig command causes a trial compilation to take
place. As the program compiles, it scrolls up on the screen the lines of the program.
Should an error be found, the compilation is aborted, and one of 28 hex values is
displayed with an error message. Reference to the manual is necessary to find out what
the hex value indicates to be wrong. If the compilation is successful, then you can
enter the "C" command again, this time followed by a Hex address, and the Z80 code
will be generated there. You can now either lesve the compiler, and jump to the code
with the moniter B command, or you can use the compiler "G" command +to execute the
program and return to the compiler when finished.

The compiler occupies Memory 1000H ~ 3200H, and uses 3200H - 3750H as workspace.
Memory outaide this can be used for the source buffer, which is defined on entry to
the compiler by additional parameters for start and length. If these parameters: are
omitted on first entry to the compiler, an error message is printed, and you are put
back in the monitor. :

As can be seen from the above figures, a 32K system would be desirable, particularly
if you wish to write a long program in Pagcal.

41

The compiler contains the run time suppert routines, which reside from 2D63H to 318AH,
and & table of the various addresses for these routines is stored at 318BH to 3200H.
It would be possible to move these routines into EPROM, having made any nrecessary
changes to addresses, and to change the position of the address table - I'll have a go
in about a montha time.

The compiler supports only Pascal reserved words in capitals, which I feel to be a
pity, a3 +the program is harder to read. It has a number of extensions to "Standard"
Pascal such as "CALL" +to call a machine language routine at a specified address -
"MEM[I]" to access the value of the byte stored at I, and alsoto store a byte at that
address, and an "ELSE" addition to the " CASE" statement.

Using a % sigr indicates that the number follewing is in HEX or is to be printed in
HEX, and a " indicates that the ASCII character having that value is to he printed.
Thege are departures from standard Pascal, and as such ought probably 1o be frowned
upon, but I feel that they have been introduced with some justification. After all, on
a micro computer, the ability %o specify addresses in HEX is something we all take for
granted - it's the way addresses come ! Basic please copy ! - and the MEM/I] is the
equivalent of the Basic PEEK and POKE.

This is a brief description of the compiler, after about a week of fiddling with it. I
would 1like +to run the BENCHMARK programs on it to give a comparison with Basic, but
that hasn't been possible due to the indisposition of my Nascom, and its subsequent
hogpitalisation in Nascom's repair dept.

The parentage of the compiler would appear to be +the Yuen and Chung TINY PASCAL
published in BYTE. It offers one considerable advantage over that implementation -~
SPEED! and MEMORY. The Chung and Yuen takes about 16K of memory for the first pass,
plus whatever the source program takes up, and about 9k for the second pass, plus
whatever the object program takes up, in addition to the basic interpreter. Because it
is interpreted, it is very slow. The INTEGER PASCAL takes up about 10K (for both
passes) and the source buffer, and the object code space, but is very much faster to
compile.

The documentation is some 14 leaves of typescript, describing Dbriefly the various
commands, and giving syntax diagrams, a sample program and & Hex listing. It could do
with rewriting and considerable extension and elaboration. It would also be a good
idea if there were given a source listing for the runtime routines, and instructions
on how to relocate them to allow them to be blown in EPROM. This would obviate having
to load a compiled code from tape at an address - zay 8000H, - and the runtime
routinea at 2D63H to 318H. The other problem with this compiler ias that it doean't
allow you to use certain areas - for example 1000H to 3200H, or the location of the
gource buffer, to store the object code it creates - and it is not possible +to place
the object code on tape, and then reload it after you have finished with the compiler.

Conclusions: An interesting if rather expensive introduction to Pascal, which could do
with attention to a few points - +tidy up the editor and extend the documentation in
particular.

Implemented are the following

CONST wes = auat PROCEDURE e ool eacasioces

VAR +.. : INTEGER; FUNCTION ----(-.-o);-.o;
«vs : ARRAY [...] OF INTEGER; MEM[...]:=...

BEGIN Beee END BEGIN ses i To e

IF....THEN....ELSE WHILE...D0...

CASE....0F....t... . ELSE....END REPEAT...UNTIL...

FOR++s2=...TO/DOWNTO...D0... WRITE(...)

READ(...) CALL(...)

END.

Integer arithmetic operations are available but with no precedence ordering - strictly
left to right evaluation.

-42~

DATRON INTEGER PASCAL a software review by .Richard Beal

It was with comnsiderable excitement that I lvaded the cassette from Datron
containing their new 12K integer Pascal package. Pascal has received much publicity as
being superior to Baaic, and while T feel that both languages have their advantages it
would be marvellous +to see Pascal running on a Nascom. The tape loaded with no
difficulty, and I cold started the program.

EBditor

The editor takes quite a lot of getting used to. When adding lines they don't
usually have line rnumbersa. A command is entered to renumber all the lines before lines
ara listed or changed. Changing lines would be very tedious if you did not use the
NAS-SYS version, since the NAS-SYS line editing can be used as im Basic. You can add,
change or delete individual 1lines by line number. At this point I found my system
sometimes "crashed”, forcing me to reload Pascal and start again. BEventually the
problem waa traced to the fact that entering a command when the file position is not
at the end of file, instead of giving an error, crashes the aystem completely.

Compiler

The compiler is very fast indeed, and it operates in two passes. If there are
any errors in the program these are detected in the first pass. The compiler stops
after the first error, but it is so fast that this is not much of a disadvantage. The
error messages just give an error number and display the line where +the error was
found. The actual error may be on the line before. If you dor't have a correct "END.",
at the end, some garbage is displayed but a correct message follows it.

Remember that only integers are supported, and this limite its usefulness for
some applications. Character varisbles did not at first appear to be supported and the
documentation does not mention them, but in fact they can essily be handled by
treating them as arrays of integers. READ and WRITE statements support characters.

Statements supported are:

CONST FUNCTION VAR PROCEDURE .BEGIN
END IF-THEN-ELSE CASE-QF WHILE-DO FOR-TO
READ WRITE CALL MEM

CALL is an extension allowing machine code routines to be called. MEM allows
the equivalent of PEEK and POKE operations.

I then typed in the demonstration SORT program provided. This included the use
of recursive calls and was impressively fast. When I came +to save it on tape
everything appeared all right, but when I later tried to read it in, disaster ! The
Pascal d4id not allow sufficient delay at the end of the line for my tape speed of 2400
BAUD, and I could not reload the program. A speed of 1200 BAUD is, I am told, the
maximum it will work with at present.

I+ is not possible to send program listings to your own printer routine, only
directliy to the UART.

—-43-

Conclusiona

Using this package is considerably more difficult than using Basic. With a
number of fairly minor improvements and with more comprehensive dJdocumentation this
would become an impressive product.

Source and Price
Datron, 2 Abbeydale Road, Sheffield S7 1FD. Tel: 0742 = 585490
Price 35.00 + VAT

MAPP 1-47 8 goftware review by Richard Beal

MAPP 1-4Z is a 4K floating point arithmetic and functions package for the ZS0
processor. It is completely independent of the specific computer or operating system
urder which it is run. It is also written in position independent code so that it can
be moved to and then run in any convenient location in memory.

The package was provided on tape in Nascom 1. format, and +the demonstration
program provided at the front of MAPP 1-4Z had been written for the T4 monitor, but we
read it into a Nascom 2 using NAS-SYS (and a special hardware interface) without
difficulty. The demonstration programs worked at first attempt, and during testing of
MAPP 1-4Z, no bugs or faults of any kind were detected. This is high quality software.

MAPP is used by coding an ordinary call to the start of it, which is followed
by one or more MAPP instructiona. The last of these is EDH which returns control to
the ordinary Z80 instruction following. In effect MAPP provides an additional set of
inatructions for the processor. These instructions treat the 280 registers in
combination providing two 40 bit floating point registers. The effective accuracy is 8
gignificant digits. While +this is better +than Basic, it is far short of the
conventional "double precision” which has 15 or 16 significant digits. Perhaps a MAPP
2 product could offer this feature.

The real point of MAPP is that you can add its 4K of code to any other program
that you develop (normally in assembler), and give yourself good arthimetic capability
without the need to write and test your own routines.

It would also be easy to write a demonstration program using MAPP to provide
simple calculator capabilities.

MAPP provides:
12 arithmetic instructions (eg: square root, divide, etc)
9 transendental functions (eg: sine, log, etc)
12 operational instructions (eg: push/pop, relative jump, etc)
10 data transfer and ASCII conversion instructions (eg: output ASCII in user
selected format, etec)
1 delay instruction

MAPP also allows for an extended form of call which includes error handling,
so that errors in the MAPP instructions can be handled by your program.

The documentation is excellent and is printed and bound. Updates to MAPP are
supplied through distribution to registered users by the supplier.

MAPP was written by John Turton of the University of Sussex, and is supplied
by: '
Enertech Ltd., 32, Gildredge Road, Eastbourne, East Sussex BN21 48H.

-4 4~

PARKINSON BASIC TOQLKIT a goftware review by Richard Beal

2 NN N NN 2N T T S T e Tk I ONE S B A

The author of NAS-DIS, David Parkinson has now produced a "Basic Toolkit". It
is used with the Nascom 8K ROM Basic to provide a number of additional direct commands
which are useful 4o the serious programmer. It is no use to people who just RUN Baszic
programs, but is very useful if you write new programs or alter old ones.

Eleven sdditional direct commands are provided. Rach consists of a full stop
'.'y, followed by a letter, and are as follows:

+A Auto line number. (Initial line number and increment can be specified.)

.C Cross reference listing. (See below.)

.D Delete a2 block of lines.

.F Find a string. (See below.)

.H Convert a Hexadecimal number to decimal.

K Kill all unnecessary spaces in the program to save space, and optionally

delete all REM statements.

2D

J) Similar to the same NAS-SYS commands, but used inside Basic.
U)

.R Renumber. (See below.)

. (By itself) return to WAS-SYS.

The three most interesting ceommands are Cross reference, Find and Renumber.

Cross reference

Number crosa reference (.C), lists every line number used and shows every line
in the program where that line is referred to. Then it does +the game for every
function used, string array, string, numeric array, and finally every ordinary
variable. The LINES command is used to control how many lines appear at & time, and
the WIDTH also operates if you are using a printer. This command is most useful for
checking the use of variables in a program, and often helps find errors, such. &aas a
variahle which is only refered to once because it was apelt incorrectly.

Find

Find {(.F), displays each line which contains a string which is to be searched
for. The search can be made to start at a specified line number, and the string to be
searched for can contain "wild" values.

Renumber

Renumber (.R), will normally renumber the whole program and you can specify
the initial line number and increment if you wish (default is from 10 in 10s).
However, an excellent feature ia that you can renumber just part of a program. This
enables you to have each subroutine start at a round number, such as a multiple of
1000. For example, to renumber a subroutine which atarts at 7800 te 8000, you might.
enter:
«R 8000 10 7800 8999
= Renumber starting at 8000, in increments of 10, the part of the program between
lines 7800 and 8999, NYaturally, any GOSUBs, GOTOs, etc, outside this area which refer
to locations within the area are renumbered accordingly. Also, if Renumber detects any
errors, such as jumps %o lines which do not exist, it reports this and leaves the
program unchanged.

To use the toolkit, you load it from tape at 1200H. Then you +type E1200 and
the toolkit vrelocates itself and cold starts Basic for you. It is s8till possible to
warm start Basic, and to reserve memory at the top if you require. The +toolkit oniy
works with NAS-5YS and the Nascom ROM RBaasic.

—-45-

Reviewers always try to find some criticism to show that they are unbiased,
but in this case, T give up.

The Parkinson Basic Toolkit is reasomnably priced at:
14.95 inc. VAT, and is available from
Henry's Radio, 404, Edgware Road, London W2 1ED.

IMPERSONAL

SCURRILOUS MUSIN:S by Guy Klueless

With the recent setting up of the West London chapel of the Mafia (migration
from North London perhaps ?), it's certainly put the frighteners on one West London
Nascom distributor, whoe is in the throes of revamping his (not so efficient) mailorder
service to meet this new competition. If the Mafia are true to form, there should be
an interesting undeclared price war breaking out in that ares shortly.

One London dealer has recently had his knuckles rapped hy Nascom for
(unintentionally, he says) 'ripping off' Nascom software. Because of the difficulty of
protecting software in law, I wonder exactly what threat wag uged ?

Nascoms' design team, which was scattered to the winds around the time +the
Receiver appeared have got together and started a new company called 3pecialist Micro
Design. Best of luck lads !! The interesting bit is that ex-Nagcom Sales Director and
prast INMC President Kerr Borland is on the list of directors. Now Kerr has recently
formed a promotions company (the name of which I forget, thats good promotion for
you); all +that is now required is to throw in ex-Nascom MD John Marshall, and wa've
got Nagcom back with the old team. Hwmmmm !!!

Incedental intelligence recently revealed that the chairmsn of the Tangerine
Computer Users Group is seriously thinking about buying a Nascom 2. Go on 1lad, then
we'll show you how to write a User's Group magazine as well.

A recent issue of Datalink credits Tony Rundle with having designed the Nascon
2. All Nascom owners with Basic know Tony, he's the one who left those bugs in the
Basic, even after he was told about them. Just as well ne didn't have anything to do
with the reat of it. If my initials were C.S. or D.R.W., I'd be round at my lawyers
right now.

I hear +that the INMC have had a bit of stick after the last issue. One
disgruntled member sent a curt note to the effect that if the INMC is as hard up as
they say they are, why waste space by publishing rubbish like that gpoof readers’
letter by the chairman, David Hunt (spelt backwards) and gilly things 1like ILawrence.
Well a spokesman for the INMC committee made this point:

They had hoped for 5 pages of ads which did not appear, so as the printers must
have things in blocks of 4 pages, 3 pages were left unused.
Those items were included to fill the extra space, and a bit of light relief
isn't a bad idea, most members appreciate it.
He algo muttered under his breath that he'd looked in the writer's envelope about ten
times =and still didn't find any article for consideration for the magazine. On that
score, if they decide to stop printing rubbish, they might decide to stop printing my
bit, and that would never do. .

..46_
280 Books

BOOK REVIEW By R.0'FARRELL

Practical Microcomputer Programming - The Z80

- e e D M " — " - e

By W.J. Weller.
Published Northern Technology Books, Bvanston, USA.

Cost: Approx 20.00

I imagine that this book title has caught most microfans eyes as théy'
ascan advertisements of books on programming because of its high price. What do
you get for your 20.00 ? -

Thia is & thick hardcovered book of some 480 pages, well laid out and
printed, .on the Z80. I+ contains a complete liating for an intereating
Asgsembler and monitor, and by sending off the back page to the publishers, one
can receive a free paper tape of the agssembler monitor object code. Great !, I
hear hundreds (thousands ? (millions ?)) of readers say as they reach for the
telephone to order this from their Friendly Local All Night Computer Store, or
their F.L.A.N.C.S's answering machine for 24 hours ordering. Don't do it ! Wait
! There is a snag.

The snag is that this excellent book, for reasons that Mr. Weller
explains in his introduction, does not use Zilog/Mostek mnemonics. Mr. Weller
feels that in the first place most microists are already acquainted with the
8080, and he extende that language to cover the added Z80 instructions.
Secondly, he feels that the Z80 language does not make a good “practical
programming language, and thirdly, that it requires about one third as many
keystrokes again per line as conventional languages. These arguments may be
true in the USA, where many people have graduated to the 280 from 8080s, but I
doubt if they are in general true in Burope, and in particular not of
Nascomers, most of whom have assembled their own machire, with no previous
experience of a microcomputer. This is the first and major snag with this book.
The language used, extended 8080, is very incomprehensible after the clear
gyntax of the Z80 language. To change from one to the other can be done, and
even done on the fly, but Murphy's law always prevailas - there are always
hidden bugs that take hours to find. One example will show this up - a wvalid
780 atatement would be JP BEGIN: meaning JUMP to the label BBGIN. This is also
a valid statement in B080 extended, meaning JUMP IF POSITIVE to BEGIN. This one
has caught me on a number of occasions, with another experienced Nascomer
looking over my shoulder as I translated. 0.X. I hear you say, I can put up
with +that %o get an mssembler listing, and then I'1l change the assembler to
the type of mnemonic I like:

The assembler is very interesting (if you can see through the 8080
mnemonice), as it allows a number of pseudo ops which are not normally
encountered = such as to define a store area of a certain size, and imnitialise
it to a given character, and one called TITL which allows you to title a
program and have its name on each page just by using the Pseudo-op. It also
allows a listing to be started and stopped at defined pointa within a program -
which is most useful and I have implemented that on ZEN for myself, and it
leaves space for any extensions to the pseudo ops you may wish to make. The
assembler is written entirely in 8080 code, and flags ‘any instructions which
are unique to the Z80 - go it is in fact a 280 cross assmbler to run on an 8080
(if you are the unfortunate) and will also facilitate those who have occasion
to convert programs back to BOBO code.’

-47-

It is claimed that this assembler runs at 1000 lines per minute on a
2MHz system, which is quite fast (comparative figures being, for ZEAP on my N1
about 400 lines per minute, and ZEN about 1150 lines per minute). Unfortunately
it takes up 9K of memory, compared with ZEAP's 2.8K and ZEN's 3.5K.

In the body of the book, Mr. Weller writes with great sense, and with
some humour on his subject. Unfortunately, T find it difficult to read because
of the necessity to translate from one mnemonic system to another, but he has
some good 1ideas, and is definitely worth reading if you can manage to do so
without the expense of buying the book. His monitor listing is interesting, as
it (and the assembler) are fully commented, but it does not offer any sizeable
advantages over the T2 bug (remember that one ?).

In my view, a book to be inspected bhefore you purchase - and don't fall
for the bait of the free assembler - for the 20,00, you could buy a copy of ZEN
from Newbear, and have enough left over to buy at least one good book on the
Z80.

ZBO and 8080 Assembly langusge Programming

e i T > 7 L1 D A U B AR it o e T TR T . S S

By Kathe Spracklen
Published by Hayden Book Co
$7.95.

The name Spracklen is best known as that of the authors of Sargon the
famous chess program for Z80 computers. This paperback book is written by Kathe
Spracklen, and sets out to be an introduction to programming the 280 in
assembly language for absolute beginners. It is clearly written, showing the
logical development of a program, with the emphasis on keeping proper
documentation and notes. It would serve as an excellent introduction to machine
language. Not only does it use the %80 Zilog mnemonics, but it also illustrates
every point in 8080 extended (TDL dialect). Those who wish to implement Sargon
on their Nascom will find this most useful for assistance in translating +the
mpemonics from the TDL dialect in which Sargon is written to the 780 mnemonics
most of use are used to.

It has a number of exercises, and is fully provided with answers, so
that you can check your work if you wish.

(Continued from page 59)

1EE0 DB 00 47 FF ES 08 1F 00 FB 1F40 20 20 20 20 20 26 20 28 5F

1EEB 45 FF 23 0A 08 00 FD FE 74 1F4B 20 20 20 20 20 20 28 20 &7 1FAS 20 20 70 70 20 20 20 2
1EF0 96 08 15 00 FF 00 FF 00 BY 1F50 20 20 18 20 18 20 18 20 57 1FED 20 20 20 26 20 20 20 2
1EF8 FF 20 20 20 20 20 20 20 F5 1F58 18 20 18 20 18 20 18 20 57 1FE8 20 20 28 20 20 20 20 20
1FG8 20 20 2020 20 20 20 20 IF 1F40 18 20 18 20 18 20 18 20 5 1FC0 20 20 20 20 20 20 20 20 OF
1768 20 20 20 20 20 20 20 20 27 1F48 20 20 20 20 20 20 20 20 §7 1¢CB 20 20 20 20 20 20 20 20 E7
1F10 26 20 07 20 97 20 07 20 E4 1F70 20 28 20 20 20 20 20 28 ©F 1FDG 20 20 20 20 20 20 OF 20 DE
1F16 07 20 07 20 07 20 07 20 D3 176 20 20 20 20 20 20 20 20 97 1FD8 20 20 OF 70 OF 20 OF 20 C4
1F20 07 20 07 20 07 26 67 20 DE 1F80 20 20 20 20 20 28 20 20 9F 1FED 9F Z0 OF 20 OF 20 OF 20 BB
1FZ8 20 20 20 28 20 20 20 20 47 1F88 20 26 20 270 20 20 20 20 &7 IFEB 20 20 28 20 20 20 20 20 o7
1F30 20 20 20 20 26 20 20 20 4F 1F90 20 20 18 20 20 78 18 70 %F 1FFS 20 20 20 20 20 26 20 20 OF
1F38 20 20 20 20 28 2¢ 70 20 7 1F98 20 20 18 20 18 20 18 20 9 AFFG 290 20 20 20 28 20 26 20 17

1FAD 18 20 18 20 18 20 18 2

-48-

BASIC

A Comparative Review of Two Toclkits for Nascom. by James Weatherson-Roberts

Some time ago I saw an advert in one of the mags for a BASIC toolkit for my Nascom 2
from Bits and P.C.s, so after a lengthy ‘phone conversation I ordered it by
Barclaycard. The next day a friendly but apologetic gentleman rang from Yorkshire to
tell me that Barclaycard said I couldn’t have a Toolkit, but thank you for the thought
anyway. The day after that a most unfriendly gentleman rang from Leeds to tell me that
Barclaycard would be very pleased never to hear from me again.

A few days later, I happened to walk into my friendly local Nascom Distributor with
(yet again) some problem or other.

"Oh, it’s you, what is it this time Young Man ? Oh look, you probably need this
(mutter,mutter)"

"What is it 7"

"A Bloo...Basic Toolkit, of course (mutter,mutter)"

l'loh"

Under this enormous pressure, I found that I had bought a Basic toolkit with my
Barclaycard (and still had my problem). When I got home, there was a neat little Jiffy
bag from Yorkshire on the doormat, since Barclaycard had paid up after all.

S0, I now have TWO Basic toolkits. Is this so bad ? Well, really it's quite an
advantage, as the facilities offered by the two are sometimes quite different. So I
here present a comparative review !!

FACILITIES OFFERED (N/A : not available)

Henry“s Toolkit Bits und P.C. g

N/A APND <filename>
Appends file <filename> to the end of existing file. This is a most useful facility
since you can then keep a tape of subroutines and APND them onto the end of your
existing BASIC file.

-A<start,increment> AUTO<start,increment>
Auto line numbering. Both work; I prefer the Bits and P.C.s version as you can change
the sequence by overtyping the existing number before entering the line.

.C N/A

Brilliant! This produces a cross-reference of all line numbers, functions and
variables (array or otherwise) Find out why your program crashes in an hour instead of
a week! (...er, perhaps I should have used two wvariable names in that 65K
Deserttrek...)

.D<start,end> DELE<start,end>
Obviously "delete". Both work.

N/A DUMP :

Again a very useful debugging facility. This command dumps all simple wvariables
{including strings but unfortunately not array variables) with their values at the end
of the run. Must be used immediately after run ends (i.e. no editing) for accuracy.

-49-

«F<lineno.><string> FIND<string>

Both very nice and a bit different. .F etc. starts at <lineno.> 1f specified and
searches for <string> to the end of the text file. If you type for <string> "L?" for
example, any character will match the "7"; useful if you use related variable names.
However, it"s a bit of a pain for Reserved words, as if you want to find say "REM" you
have to use the graphics character equivalent. The Bits and P.C.s wversion has fixed
this and 1s easier to use. But perhaps someone can explain why I can’t have a "find
and optionally change"? Both of these finds can cause confusion if you forget to turn
them off.

N/A HELP
Very nice idea but not as good as I°d like. ("Tough", I hear). After for example , a
"? SN Error" , if you type "HELP" the line that caused the problems will be displayed
at the bottom of your screen, with the cursor hopefully near the problem statement.
Unfortunately, the Basic tends to cop out at different places depending on the type of
error, so sometimes it”s not a "HELP". However, if you use multi-statement lines (a
very bad habit) this can indeed be a "HELP"

H<hex value> HEX<up to 10 values>
These commands accept hex and return. decimal. Apparently they are useful for machine
code, whatever that is - T really wouldn’t know. Presumably the bigger the better, so

the Bits and P.C.s gets the "*" {(scared of machine code ? O0f course not..I'm
petrified)
K<8> N/A

Again, L find this useful. .KS deletes all non-significant spaces; .K deletes the
"REM"s as well, so making your programs even more incomprehensible (and mueh faster).

R<nu.start><ine><start><stop> RENU<inc>

Renumber,of course: the one really essential facility cffered by these add-ons. The
Henry“ s version is far more versatile, allowing you to start subroutines on reasonable
increments and with care, changing the order of your file!

N/A STEP

This is an example of something that is lovely when it works. After typeing "STEP" you
are asked for a string. You can enter "The value of'"<list of variables> is"<list of
variables>, When you type "RUN" the Basic program is single stepped with the values
defined printed on the top line of the display. Great idea. Unless you have something
else happening on the top line. In which case you can get some extraordinary Syntax
errors. However, if you want to analyse a2 non- printing subroutine it can be ver

useful. But remember to turn it off., ‘

UTILITIES

N/A Inkey
Not a command, but a routine that is rather trying to call. I prefer the routine
published in INMC as this also gives the flashing cursor.

Keyboard Repeat
Both toolkits have this facility. The Henry’s one tells you how to vary rates.

~50-

N/A Printer handshake
A useful extra, saves a wasted 2708 or lots of typing. Works. From Basic, one Poke on,
one Poke off.

N/A RINK ,
Supposed to' scan the keyboard once and return with value if key pressed. I can’t get
this to work {(but see above re. machine code !).

U, X, N N/A
Activate U our, X out, Return to monitor respectively. Since I don't understand
Nag-8ys the first two are an unknown quantity for me.

Irritating Features.

— e o e e e

The Henry’s format of ".<Command>" is a nuisance compared to the meaningful names of
the other. Soon get used to it though. The Bits and P.C."s has some strange features
(not really bugs but with no info....) .

DOCUMERTATION of both is of the standard that we have come to expect, i.e. lousy.
There seems small chance of gaining any comprehension of how efither works, though the
Henry’s information is slightly better.

RELATIVE ADVANTAGES ...l generally use the Bits and P.C.s toolkit since it is 1) in
ROM and instantly available 2) uses no RAM space at all except in the work area. The
Henry's version eats 2K of expensive RAM. However, the price paid for this Is that the
Bits and P.C.s toolkit is very noticeably slower.Fair exchange ?

ARE THEY WORTH BUYING ? Well, I don’t regret the money and wouldn’t want to lose
either. However I would trade both for the following facilities comprehensively
implemented in ROM: 1) Renumber, like the Henry’s 2) Find and optionally change 3)
Append 4) Auto 5) Cross reference listing 6) Dumpin that order, implemented using
Keyboard repeat (or use Nas-sys 3) The rest of the facilities are o.k. but Oh! for a
find and optionally change.ssesecsnonn.

Please note: the author is a known Dodo; bear this in mind when buying either.

Below is a “PRINT USING’ routine, also from Mr.James Weatherson-Roberts.

780 REM #** DEMO ROUTINE #* 790 PC=.1

800 GOSUBI1LS50 810 PRINT,PUS
820 PC=-1 830 GOSUBL150
840 PRINT,PUS 850 0P=1:PC=10
860 GOSUBL150 870 PRINT,PUS
880 OP=1:PC=-100 890 GOSUBL150
900 PRINT,PUS 910 PC=1234.0345
920 GOSUB1150 930 PRINT,PUS
940 PC=1234.0354 950 GOSUR1150
960 PRINT,PUS 970 PC=9999999
980 GOSUB1150 990 END

1000 REM AkkRARARAR PRINT USING *h&kkkhdhkdhhikiis
1010 REM Version 3.2

1020 REM Variables used:

1030 REM PM$§ (Print mask)

1040 REM SW (Switch)

1050 REM oOF {(Option)

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
10

1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
12906
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
Ok

-51-

REM PC$ (Fudge variable)

REM Call with value in PC (Print Call)

REM Returns PU$ (Print using)

REM —————- e e e e e o ot
REM ! {
REM | Call Routine at 9013 !
REM 1!]
REM —————e—wmmmmem—— ———

REM wwmwcmm———— Test Limits

IF PC<=9999.99 THEN IF PC>=-9999.99 THENI12

PRINT"Value "PC"is outside accuracy limit"

PRINT"Please call programmer"

PRINT

'PRINT'#*%%%% RUN ABORTED #*#*#%%%*'':END

REM ——————- Reset Sign Switch

SW=0

REM —=—————m Round and Extract Sign—-—-——w=——

IF PC<(} THEN PC=ABS(PC}:SW=1

PC=INT(PC*100+.5)/100

REM wemmm e Make it a string——————————-
PUS=8TRS$(PC)

REM —=——wmm Strip off leading space==—=—w==—-
PUS=RIGHTS (PUS,LEN(PUS)-1)

REM ——---Test for no decimal places—————-—-
TIF PC=INT{PC) THER PU$=PUS+".00":G0T01360
REM ——--Test for one decimal place————-—=
REM ----{ Fudge for Microsoft Bug)-————-

PC=PC*10:PCS=STRS (PC) :PC=VAL (PCS§) : PCS="""
IF PC=INT(PC) THEN PUS=PUS+"0Q"

REM —~—Check there is leading zero-——=—w--
IF LEN(PUS$)<>3 THEN1390

PUS="0"+RIGHTS (PUS,3)

REM —=——me— Change all "0"to" 0" ~————r———
FOR I=1 TO LEN(PUS)

PC$=MIDS$ (PUS,I,1)

IF PCS="0" THEN PCS=''0"
PUS=PUSHPCS

NEXT I

PUS=RIGHTS (PUS,I-1)
Pc$="l|

REM ---Message(Debit):Change to suit-----
IF SW=1 THEN PUS$=PU$+" p DB":GOTO1520
PUS=PUS+" p ":REM Five spaces

REM ~--Produce Qutput String----——-——————-
REM ---0P Selects Floating#/Fixed#—————=
REM ——————— (1)Fizxed #——————mmm e
IF OP>0 THEN1570

PMG=" fhkk A"
PUS=LEFTS (PM$, (14-~-LEN(PUS)))+PUS
GOTO1600

REM —————— (2)}Floating # —-——
PMS=" ":REM Four spaces

PUS="#"4+PUS
PUS=LEFTS$ (PM$, (14-LEN (PUS)) }+PUS
OP=0:PMS="":PC=0

RETURN

REM*%%***END ‘PRINT USING’ #%hfkikkkkiksk

-52-

A third toolkit

WATKINS TOOLKIT REVIEW

On the closing date for copy for this issue a kind member said to me, "I’ve
got the Watkins Basic Toolkit". I was tempted to reply that I hoped it wasn’t
contagious, or perhaps he was boasting about some obscure operation I hadn’t heard of,
but being my normal polite self and deciding to play it safe, I replied, "Never heard
of it.". Anyway, he veolunteered to give me a review of it, and as this issue contains
reviews of the other two toolkits we know about, I asked him if I could have it
yesterday, as this issue was already ‘put to bed”, Well, he was a bit slow for
yesterday, but the day after {(or do I mean two days after yesterday), it was duly in
my hands. T must admit when I read it, it was a little unclear, but as he had kindly
provided me with (an alwmost unreadable) copy of the instructions, I managed to
unscramble it. This article has had to be edited quite a bit, and as I don”t know the
animal at all, some of 1t is summize. My apoleogies to Mr. Watkins and Mr. Mathison if
I‘ve misinterpreted anything. - DRH.

The Watkins Basic Toolkit a software review by A. D. Mathison

What you get

A casgette tape written in either Nl or N2 format containing on one side some
demonstration and games programs, and on the other, a couple of copies of the toolkit.
Also a couple of pages of badly copied, and at first reading, slightly misleading
instructions.

Operation

It appears that the toel kit is a series of machine code subroutines which may
be called from Basic. The call being made to a2 small routine which takes the parameter
passed to it from the USR call, and uses that parameter to determine which routine is
te be called. There are eight vroutines in all. T will confine myself to the N2
version, but I believe that the differences between this and the N1 version are
minimal. (The dinstructions make no mention of NAS-SYS/NASBUG compatibility, but it
certainly works on NAS-S5YS 1, no tests have been carried out on NASBUG or NAS-SYS 3.)
After power up, initialize Basic as normal using the ‘J° command and unless memory
size is to be restricted for your own reasons, type ‘ENTER” in reply to the ‘Memory
size” prompt. Get back into the monitor by using “RESET” or “MONITOR” and load the
toolkit using the 'R’ command. It occupies space from OCB0H to OFE3H. At the end of
the read, re-enter Basic using the “Z° command. The functions are now initialized by a
*direct” DOKE 4100,3200 command or as statements within a Basic program.

Functions 0, 1, 2, 3 and 6 are best called with a
USR(X)
where X equals the function number. Functions 4 and 5 return a wvalue into a varilable
X=USR(4) or X=USR(5)
7 and 8 are special and are entered as
U=USR(7)AS or U=USR(8)AS$
where A$ 1s the array to be saved or loaded. Functions 0 and 3 can be given maximum
space by a
CLEAR O
but don’t forget to reset the string space otherwise there will be no string space
available when you come to run the program.

-53-

Functions

EXPAND. Tnserts spaces into a program to make it more readable., Tt does not
touch spaces within REMs or inside quotes.
COMPRESS. The opposite of the above.

2 REMDEL. Same as 1, but also removes all REM lines.

3 RENUMBER. Renumber lines starting at 10 in increments of 10. The starting
number can be changed by DOKE 3709,X and the increment changed by DOKE 3720,Y.
Undefined line references are renumbered /999/ and may be located using the
find command. Any renumbering errors are liable to corrupt the program. '

4 INKEY2. The keyboard status is returned as the variable assigned to the USR
call. This has a repeat action as long as the key 1s depressed.’

5 TNKEYl. As above but with no repeat action. Both 4 and 5 return 0 if no key
is depressed. o

6 FIND. On calling you are prompted with F? You may enter the functions you wish
to find, either alphabetic or numeric or a combination of both, terminated by
an “ENTER’. The lines containing the data required is 1listed on the screen
N lines at a time, where N has been set by the LINES command. Default. is 5.

7 SAVES. Save a string array-.

8 LOADS. Reloads a string array.

Conclusion

The documentation is poor. Operation and use are good. Shame there is no LINK

function instead of INKEY2. Overall very good value for money.

The tape is available from A. Watkins, 12, Merton Close, Maidenhead, Berks.
Price 6.00.

Interface Components stocks a full range of Nascom products and peripherals suitable

for

use with Nascom 1 or 2. In addition to this wide range of product we have the

following items at highly competitive prices.

NAS-SYS 3 4n 2x2708 (N1) or 1x2716 (N2) - 25.00 + VAT (p&p 35p)
MK36271 8K BASIC ROM — 20.00 + VAT (p&p 35p)

IMP RIBBON CARTRIDGES - 6.60 + VAT (p&p 50p)

FAN FOLD PAPER (2000 SHEETS) - 18,00 + VAT (p&p 2.530)

NASCOM TESTER FOR NASCOM 1 and 2 - 55.00 + VAT (p&p 1.30)

This board connects to the Nl pcb or the NASBUS and monitors all bus lines.

MACHINE CODE PROGRAMMING FOR THE NASCOM 1 AND 2 - 4.50 (No VAT. 50p pép)

This book takes the reader step by step through most of the impressive Z80
instruction set, with particular reference to the Nascom.

THE CP/M HANDBOOK by RODNEY ZAKS -~ 8.95 (No VAT. 75p pép)

An introduction to the use of CP/M equipped computers, and a reference text.
Recommended for those adding CP/M to their Nascom.

PROGRAMMING THE Z80 by RODNEY ZAKS - 9.75 (No VAT. 1.00 p&p)

A thorough introduction to Z80 machine language programming, from basic
concepts to advanced data structures and techniques.

INTERFACE COMPONENTS LTD.
OAKFIELD CORNER, SYCAMORE ROAD, AMERSHAM, BUCKS HP6 65U
TELEPHONE: 02403 22307. TELEX 837788

-54-

‘SUPERMUM’ COMBINED
MOTHER/BUFFER/PSU BOARD I

v/ 4
Gemini Micocomputers

Oakfieid Comner Sycamore Road Amersham Bucks HP6 SEQ
Telephone (02403) 22307 Telex 837788

The Gemini G806 ‘Supermum’ makes it
possible to exploit the full capabilities
of the ubiquitious Nascom 1. This 12"x8"
board sits parallel to the Nascom and
provides a superb 5A PSU, a 5 slot
motherboard, and a buffer board that
includes ‘Reset Jump” facilities and also
overcomes problems experienced with the
NM buffer board.

At only 85.00 this product represents
superb value for money. To existing and
potential Nascom 1 owners we recommend
most strongly that you consider the very
easy expansion potential of this product.

+£2.50 P&P + VAT

Adi prices ore corract ot ime of going fo press.

All ihe products are available while stocks kst from the Nascom dedlers below,

(Mall order enquirers should telephone for dedivery dates and post and packing costs.) Access & Barclcycard welcome.

BITS & PC’S ELECTROVALUE LTD. TARGET ELECTRONICS HENRY'S RADIO)

4 Westgote Wetherby, W.Yorks. 680 BurnageLane,Bumage, 16 ChenyLane,Bristol BS13NG. 404 Edgware Road, London W2.

Te(0937)63774. ManchesterM19 TNA. Tel:(0272)421196 ‘ Tel:(01) 402 6822.

BUSINESS & LEISURE Tel:(061) 432 4945, _ INTERFACE COMPONENTSLYD, ~ TIx:262284 (quote ref:1400)

MICROCOMPUTERS 28 5t Judes,Englefield Green, Oakfield Corner,Sycamore Road, - gap= il il

16 The Square, Kenliworth, Warks. Egham, Surrey TW20 OHB, Amershom; Bucks.
Tek(0926)512127. Tol:(0784) 33603. Tix:264475. Tel: (02403) 22307 Nx:837788.

JOIN US
HERE

INMC80 SUBSCRIPTIONS

I would like to subscribe to the INMC80 News for 12 months, starting from the INMC80-3
issue. I enclose my cheque !/ postal order / international money order (but NOT a
French cheque) payable to "INMC80", value :

UK Subscriptions : 6.00
Overseas subscriptions : 7.50
Name : TO: INMC80 Subscription,
c/o Oakfield Corner,
Address : Sycamore Road,
AMERSHAM,

Bucks. HP6 SEQO

A GREAT DEAL FROM
6 NASCOM DEALERS

and guaranteed after-sales service

BUILT FLOPPY DISC SYSTEM FORNASCOM 1/2 FROM £395 VAT _

IF's here at last, Afloppy disc system and CP/M. drives, CP/M 1.4 on diskette plus manual,
CP/M SYSTEM. a BIOS EPROM and new N2MD PROM Al
The disc unit comes fully assembied complefe in a stylish enclosure. ‘
with one ortwo 53 drives (FD250double Nascom 2 Single drive system. £450 + Vat |
sided, single density) giving 160K perdrive, Nascom 2 Double drive system£640 + Vat
controlier card, powersupply.inferconnects Nascam 1 Single drive system. €460 - Vat
trom Nascom 1 or 2 tothe FDC card and a Nascom 1 Double drive systen €650 + vat
second interconnect fromthe FDC card fotwo Additlonal FD250 drives €205 + Vot |

D-DOSSYSTEM . Single drive system £3095 + VAT
The disc unit is also available without (please state which Nascom the unit is for)
OF/Mto endble exisfing Nas Sys soMware ™ ogin eyt of the GP/M and D-DOS

10 be usad.Simple regd, write routines are :

; ; disc sysferns are available in kit form,
supplied in EPROM.The unit plugs straight ’
into the Nascom PIO. Details available on request.

ENCLOSURE FORN2+ 5 | dh[nverrace
The Kenilworth case (s o professtonal cose ENHANCING UNIT

designed specificalty for the Nascom 2 and up
fo five additional 8" x 8- cards. It has hordwood
side panels and o plastic coated steel base and
cover.Afully cut back panel will aceept afan,
UHF and video connectors and up to 8 D-ype
conneclors. The basic case accepts the N2

board, PSU and keyboard.Opticnal support
kits are aveilable for 2 and 5 card expansion.
Keniworth case £49.50 + vat :
2-cord support kit £7.50 +Vate5-card support kit £19.50+Va

The Castie Intarfacais a built and tested add-on
unitwhich iifts tha Nascom 2 info the class of
the fully professionat computer. It mutes
spurious output from cassette recorder
switching, acds motor confrol facilities,
aulomatically switches output betweon,
cassefte and printer, simplifies 2400 baud
cassetie operating, and provides true RS232
handshake.

Castle Interface Unit .. £47.50 - vat

EPROM EXPANSION

The Nasbus compatible EPROM board occepts
upfo 32,2716 or 16,2708 EPROMs. It has

£ 0seporate socket forthe MK36271 8K BASIC

ROM for the banefit of Nascom-1 users.And for
1 Nascom-2 usets, o wait state for slower

@ { EPROMS.The board also supponts the Nascom

Page Mode Scheme.

EPROM Board (Kit)............ £55. vat
{ EPROM Board (built & tested) £70- Vat

A-D CONVERTER

For really interesting and useful inferactions with the ‘outside
world’ the Milhom analogue fo digital converer is @ must. This
8-bit convertar is multiplexed betwean four channels- all software
selectable. Sompling rate is 4KHz.Sensifivity is adjustable.

Typical applications include femperature measurement,
voica analysis, joysfick racking and voltoge measurement.It is
supplied built gnd lested with extensiva software and easy
connaction 1o tha Nascom PIC.

Milham A-D Converter (buitt and fested) ‘£49.50 .- vat

PROGRAMMER'S AID. BASIC PROGRAMMER'S AID,

For Nascom ROM BASIC running under Nas-Sys. Supplied in Suprliad onapa for N1/2 runining Nas-Sys and Nascom ROM
D2708 EPROMs, Features inciude: auto ine numbering; BASIC, Fegtures include aufo line number, full cross-reference
Imall[s:m tenumbering; program appending, linedelefion; listing, dalete lines, find, compacting command, plus.a
NASCOM-2 Microcomputer Kit £225 + Val nexadecimal conversion; recompression of fésarved words; compehansive line re-numbering focility. Price: 43 Vat.
NASCOM-1 Microcomputer Kit £125 + Vat autorepeat; and printer handshake routines. Price £28 . Vet PROM-PROG MKJI.

Built&tested £140 + Val DUALMONITOR BOARD. Apiggy-backboardihat 2708 (multh-oi) and 2716 (single-rail) EPROM programmer
IMP Printer. Built & tested £325 + Vot allows N1 users to swilch rapidly betwesn fwo separate kit confralied by N1/2 P10. Supplied with comprehensive
operating systems. Price (kif): £6.50.Vat. software for use with Nas-Sys. Price: £25.95 - Vot,
All prices are correct ot time of going 1o press.

All the products are available while stocks last from the Nascom dealers below.
(Mail arder enquirers should telephone tor delivery dates and past and packing costs.) Access & Barclaycard welcome.

BITS&PC'S ELECTRGVALUE LTD. TARGET ELECTRQNICS HENRY'S RADIO

4 Westgute,Wetherbv,W.Yorks. 680 Burnage Lane, Bumage, 16 Cheny Lane, Bristol 851 3NG. 404 Edgware Road, London W2.
Tel:(0937) 63774, ManchesterM19 1NA, - Tel:(0272) 421196 Tel:(01) 4026822,
BUSINESS & LEISURE Tel:(061) 432 4945. (NTERFACE COMPONENTSLTD, Tix:262284 (quote ief:1400)

MICROCOMPUTERS 28 St Judes,Englefiedd Green, Oakfield Corner,Sycamore Road, EFSEE i
16 The Square,Kenilworth, Warks. Egham, Surrey TW20 OHB. Amersham, Bucks. r. .
Tel:(0926)512127. Tel:(0784) 33603.Tix:264475. Tel: (02403) 22307.TIx:837788. [e

-56-

CEMTPHYEIEEESLRUSTEIZEEYN R E R R B R r Ko P B B S 2NN SRS YYY
SRS B RN R L Rl =R R s S ke R §- R R N R RS RR Re i e e Rl N R R
ER N RS R L R PR R R - T I R RN R R R T T I R Rl B F bl W
SR RER RN R R R s R R Rt R R - R NN N 2 i R g h R R e RNR R R il e R R R B
g s Fa @ R RN R S R g - R S b T - B R AR R R R B e
SRR A R R RN e R R p R e g R R R R R Tk R AT N R R el R R R
R RN LR TR R R A R R i R BT R R T A R SLSTETBEIISINE
E R RN R R R R R e - RN R S R R o T A N T R i R G N R R
RNl S e R NS B I N TR IR S S S R s R Y AR e S Y I S S RS SRR YN ST s 5TSSRssSse
SHEEER R R R S PR C N R R LR LR R L EEREFERE R

CE P SIS I R r N I B R e e R O A I M ST S SRR R S Y R R RN SR OO eSS 2Ol 2a28 N
P RS Rl e R RSP P RSN IR PR RIYE ST YUY B ES8RS T ERY ST S BRI TISTIIIIRS
S Bl s 0N SR r S ST RS Rl SN S Y BN RSN S YNBSS R S S L I ST IINREERETs
B R e S RS P TN SR RN e Pl s IS Y e BN R Er OB S 3T USRI SIS0
s s R SN R R AT Y P R Y BN E s N BN R SRS S e Y s T s SS3UTs3eR
Bl I OSSN E s P R N P r s I T i e R Y S I Y B S SN S ES N NS0T S BRI R8
LRSS e oL el B P I PR S S s s Y S S HN N S rF N Y Sl e s N R R RSN s S S Y a RS Y s RNS I T HHTUES
SRR R SRR pn b R R e R . RN R R R I R b - R E Ll B R R R R R
Bk RN e NN S e S e NSNS S S S SN SRS T P RN Y SBT3 IS Y T s 3= NRS
CESE8SSN 8N EGRS3S BT 3 8855888 E3E5558G 8 et 338 EEE3ERERaERERR
RN B N s L RGN C e rHHE 8 I LS s A OSSRl AR RO HG SN YL e HEERERS

B S o BN R RS LM e R AN S S S e R AR SRSy s RSN QN RESSEShEIHEERrNREsaS

BN SN R R RS s e S S E R RS RGN NSSDESSYRARSSSRpeSsenesgwnespEgesgssns
BN S SR BN YR SN S RN S e U RO I B SN NS IR S S NER eSSBS NSRS RSES

E R HN S SR S e s R e L R S SR SIS ERE S SRS RN ORISR sSMaEY
AN PR S S AR I SR S P R RIS 8RR B NS ROSRES NIRRT 38N

R i = = R - R S R - S] [B v I S | WO = e [TR o] = O =

™ = = i — I R B I I T Tl O P b Ll e G Ll B P B = N T B~ L o - R - I R -l s R R Y | == (= =]
=t o= -t = (- =2 00 0 O T et o OF i P - f=] -t oo o 23 il ~0 o < oo = o o0 X el = == e |
b—4 o= = = o o = =00 o 0= = =R =R R - R R R e R R e B s a] = = D e = 0o o = oo o s o
nnnuunﬂaauouﬂﬂﬁﬂaneaanuunnoﬂﬂ“ﬂuu.‘&l1111111111111111111111111111
Rl i I e R R e e I I I e e B I e I T R R I R A I I e e G i R e R I T T o B o [JEE JEph o Qg QUSRS S S et - B Sl - - J. - - S S-S - ot G-t

SINFLIFIED MODULAR PRUSE

NAS-5YS. EXECUTE AT 1800
0
8
0
co
co
EF
&

-57 -

S B ECE OSSR FEEn PR REIR SN BINRYS R b sl N S e Al R el o e R R R N
Y e s RSN G SNSRI HLE O UTISGE SO RSN NNEARET NI LN SNSRI SNNERNS S
L L L O T T I ervvanp g g e L h - P N R P LT
SIS e I s S S NS IS ST RuSE SEEFFrESONSHHEHYLARADQUMESHYHESENNSe
R B S e S s Y s N SN T R LT e SERFOCHRSHagHRHdanugeLSeS NN
O S i R R BT R T N RS R R S BEARENS¥CRYrEaNNES NS coNunD MR e
S eSS S e TS RY NIRRT eSS s ST TS e FLA RO S SR HUNENERSNHENN28
o R e A R R L e A R SHBARNAuFS s NSESS N sAR 2 NAYEEzIEY
SRR g A R R - R B e o - R R CEESPBNEENHSoLRUNaAENUEAREREMrRYSER
e B B R R e SR R L R = 0 = R R R R] 2000 S = b e) SO e) 0RO e O o B 0 s 00 o QO AN 00 e OO
KEBEEEE85EREEEBS35C28582358:838 EEELESEESE L EE IR SEREEEEREEL
B PR P RN RS SRETRS BRSSP R R R S N NS e R e e - S R
RN TR NN NG SR TSI RI SN ERYaN 2SS ¥ELEIORVSLEANAUINATANEEARBEaNAER
R R L R N S T E I E R T SE-SSSaNBUEERANEAR/YIAUIBIRARNEER
s NS S s S E RN YT e T YW SR e Q eSS SUERBESIHNHHEZSHESDHEERBEEREEHEE
RS - I o e N R T - I NEB N AN aRHESARNEYRRadE S
YT T8RS IIBILYRETEITRLTBTSSLN FEENEARPRASHEIREBARBETALLARF2 L3N
S SN I e NI R YE S gEsPE IO T N3 ThCRBYHSHHFHEZIUUHHIARIRBNRES
R R N S R T R B Rl o B B ST R R SRNHNSSOCRR8RE8ctocEnrYaygaEIgaUymase
T YIS BT IS SR E TSNS US R g N R SR CdF N HEPHEBR RS EERLE R S
SRR R I RN I I I I R IS EE S 3SR R R e e8I EERS888
CEECERYGBEERFBEIELBELUOTSEpAsgesEs SEOEREEEHEEBRESREBOLBE DI W
SARNEREIERITYSSNgYeBEylcgurgsesss RENNELSERISYHEESHERSEES3HaL88388
R BSNSSRRRN YN S YR RUILRLERINERSS SHNSYEEEIaTFeREgHANTIYssSsYsgss
PSRN SRS SRS Y BRSNS EBRIORTYS S SNV YLHPRAUSHEINUNYILSYUESERYIRS
N RSN E S S BN MY VYW HES SIS TIISYs8aeT T O ERENAKRYIBEIFSSELNTYSECTESRRR
eI R N RN SRS R G R B i R S EROUNIALIBEPEETHUNBHERSSHSRERS
NRZY IO NSRS Ul sTYessnz EE SLEECBRERBYRIrEnoTeLl=SaaRsaERh
CRETENISNSIOUNBRTSSsINSECz4YES3 £ EICNUSIRECIIIRASSSrN=SgarEsSREes
SRS RETGN8BLL RIS LRIBNITLLEIISNETS Few SERUSCHYSFNERIR DS BABLTESSES
= 0 = = = A o 0O o 00 S 00 SR O T OO oS = o0 o 90 o 00 & 0 bed Cr¥ =0 = O o L= B —R e B] b i - s = - = e BT e - I) =
EEREFREREEER PR LR R R PR LR B ¢y SESSE5ECBZECES3SEEESE322E3588

~58-

BB S S ;P e S L L P R Y S s S T SR N P N S S S R P e R E S S SR A T HIYEES SR T
FhocgRuaihgnmuuooa¥aed oo s Fw S T NN R SRS Os oI oo nagdEgsRssgomES
S S L SN RSOy S e R E N R B SN SS I NNE s U UEN RIS SERRIERERERZSRS
L RNy S SRS eSS0 SRR ARt S S LA S ARy SR+ RS SIS SNRSEHAAIREAR
RSN iR S S S S AR S Y SR RIS SRS RS2 SRNRNSUERAE8IR
DR E S PSRN S L R N e N O M N R LR R SIS NS B P RSCREIRRR 22 RE25 R
M NS S SO oS O P I St e N S S SR Y PSR S U REERN S UNR S HEB RS
PR s RN s S AN LS N Y P RS NERS S S NOS RS HE SN S URE TR ERR TR E
B s C eSS S E N8R s B SR SR R e SRS RNUR SRS SRNSEERFSRNESEZSERS
= 00 e 00 o 00 & 0 S O S0 B0 2 DD &2 D e L= o B W s B —) E-m 3 = e B — R = B R = B — e = B — i v = B o B e B = e R e B I = R L— == —1 e 0 O oD a2 o O e OO
EEEGEE B C B RN EiEEEEEECEEEEEE3555283 833525535288 88
EmM%%W%ﬁmEMmm%mR%MWHWﬁmmmmmwwHHWmeMWMMNMMwMH%M%%Hﬁ%&%ﬂmﬂﬂﬁmzﬁwu
BAN NS S SRR UL AnHEyOINAaneaSs %WWM%%mm%&WM%%HNWEHWBE%WHM%HH
wam%%mwﬁmﬁmﬂﬂwwwumNﬁEWM%MWEWMHEW‘Wﬂ%m%%%HﬁEﬂ%ﬁ%ﬂﬁﬁﬂﬂnmwmwmmwwnﬁﬂ
oS esndenErsane Y PSSR SH e H SERs R Y D E S ONTONESHEEOS SrEgtdesserps288
mﬁwmmwﬂﬂm%WUHﬁmmwmMﬂWwﬁwmHﬁm%Mwwmmewmﬁmmme%wmw%nwwwwwww HEegES
FhHSHEES eSS nayuneg WL H e F R S N E RN N s SN E NS E e U DS o m s T o
= wﬁmﬁmmﬁﬂmmmﬁm%ﬁﬂwﬂw%KEﬁmmmmﬁENN%MMnmMWWE%ﬁ%MMEHWMMHmwmmmmem ™~
mmﬁﬂﬁﬂmm%mﬁm&mumﬁmwﬁﬂWﬁmmm%M%HWH%E%%WN%WNHHWWWWHH%N SERzTogYdmeEssy
EE%m%mHmmmﬂﬁﬂmmmmmnmmWEMEHmn%%m&mEmwmmmﬂ%%mmWﬂﬁwwnnﬂmwﬂmwﬂw%ﬁ%Mm
i e L R R R R EEE IR T E I L L I LT L PP b
DR S e s P SR R S L ek Y B Y RSN L I RN S L e R S R R e N A TR SR FHUS SR e W RS
R n S eI e e E s e P S U R E gl LIS g e s S seSsrag SResrolognuansengwagsy
BN S SR SIS RN ARS8 OGS Y S S ER T r P REH S YA RINR SR FARAINEIHYS

[] = P o D S e O R O = T O S MNoC LSS S R =] a L

o e S 0 e S P T S S O L 0Y M3 S S b O (oo et S @ e O e £ 0o o4 L
mi.w.l.mﬂmm\mﬂ.lwna??lmzqrrﬂ.ﬂuﬂﬁﬁ? L S E S R e BN SRS YU Y8 SaANSSEn NN

[T T = B 0 P N 07 L3 v] Al = NN v S O3 A0 e e] e F e I]

B SRR A E S NI E e S S P S BN BN C R e SR RSN R r ST RN aMRYSINETFagNuUTNER=SaE8N

Rl S S N S SR E Il S E R S F S S N R SR e R PR AR s o RSN BYHUE LSRN adgree8sHN

R N MRS S R Y SR R P NN S SRS e s R FLhNFLIN SR AECaRsRYpBSosseBpuUsFRsa
L)

SERENEEEEREEER EEEEEL L ELERLLEEEEERELE B s S b R S S L

1BED 23 13 F? EL 09
18£8 08 01 31 03 ED
19F0 36 20 23 18 F7

1730 &7 ED 52 1%
1938 17 20 FZ 09 72 06 19 FE 20
1941 20 28 17 ©E 19 28 13 FE 08
28 OF D6 24 FE 21 28 39
PR IPCDEYITCBCIFS
B 1370 CY 26 00 22 IF 4F
1E A Z1 1E ED 4B 10 1E 73
8 B7 2802 &
ZE 04 £D 1Z 17 3
e 3077230
28 146 011 44 6D
1938 OF 01 £8 00 FE
1994 01 20 01 34 3
99887 37 363

e B el i BT Bl 0 N TR

| A 2 I o B i S £
B = I]
T 2 e O T R
M0 M oes I3 LWL L) O~ =D G000 s 0B

=
-
fay)

1 b0 20 &2 T T e e L1}

3 0AZZI5IED
2 1A FL EY DE

Mo o= T e = — LT PR
cmmm—h%:ﬂmgmﬁn—-m
A R e B TS I e B N Sy B - BV o I]
S Mmoo e en £ Ll oo)

-50-

1AED 00 78 23 F5 34 04 1E 11 &7
1AES 18 09 FE 4E 2B 0A 11 58 O0A
14F8 09 FE 47 28 03 11 98 99 35
1AFB Fi &7 £D 52 19 01 CB FF D2
1800 28 94 ED 4% E7 1D ED 43 B3
1665 £7 10 09 FE 31 2B 05 22 AE
1pi0 90 1E 18 03 22 9B iE CD 89
1E18 F5 18 E5 21 84 08 11 DA 73
1820 6% 13 35 20 01 BG 03 ED 4D
1628 BO E1 b 42 18 EL 3E 01 1B
1B20 32 E6 1D €3 90 12 €D 2C DE
1838 10 21 4k 08 CD 34 10 EF FA
1890 47 72 41 70 6B 47 63 73 BC
1648 28 59 2F 4E 3F 20 00 CD B85
130 50 10 CD &9 10 FE 59 28 6
138 18 3B 30 32 F3 1D 32 F5 &F
1B4) 1D 3E 0 37 F4 1D 3E 7F E4
1BoR 32 G0 1€ 3 20 32 01 IE 87
170 % 3E A7 32 F3 1D 3E AF 68
1678 37 74 1D 3F AR 32 F5 1D 03
180 3E OF 32 00 1E 3E 9F 32 17
1B8E L] 1E 3E GF D3 04 AF D3 4A
WY MOy 1P 12193004
1E9E OO 3E 31 CD 12 19 3D 4F 46

16A0 06 6D 21 B2 0B 09 CD 27 73
1EAD 15 9 21 34 08 11 30 00 49
1E20 46 OF 3E FF OE 16 77 23 D9
1BEE 9D 29 FE 1% 10 F6 3E 07 SA
IBCR OO 12 19 L 32 18 IEED 9
1BCB 36 &5 1t DD ZA 25 1E DD A8
1B0E 35 FF 20 o0 34 01 20 DD 51
1eDB 78 40 BB 21 77 1E 3E 1E OE
1BED ©F 17 19 T4 04 37 07 iE 14
IBES 47 3£ 14 €D 12 19 77 23 X
iBFG 05 D5 ES 3E 04 ©D 12 19 C4
AEFE A7 721 B0 06 11 90 00 E7 83

1686 £6 52 10 FB 3E OF CD 12 92
1CG2 19 De 08 9F 17 9F 47 09 70
IS0 E3 €1 71 23 70 01 €3 23 8¢
1018 73 23 72 73 36 B0 1E FE ED
28 70 20 7 3B IF CD 1219 &7
1028 13 07 3k 7v CD 12 1% CR E3
1036 FF 77 23 10 B4 11 0A 06 CC
1638 00 21 27 1E AF 32 66 1E 9C
C4 3 7 IE 47 CS DD 7E B0 22
1048 B7 28 3C 32 06 1E DD 35 &7
1050 06 B0 98 01 DB 4 02 0D 94
1058 & 03 0D 46 04 36 20 3 BF
1CAG 28 25 0% AF ED 57 19 36 11
1068 1E 7E FE 20 2B 0C 3C 28 D6
1C7¢ 16 3D ED E6 19 20 03 AF 7D
1076 18 oD DO 73 03 0D 79 14 63
1C8f B0 7E 05 77 DD 7E 00 DD A
1CBE 77 09 01 04 00 DD 6% C1 C9
9% 10 B2 34 06 1E B7 28 0B EI
1098 35 04 €O B0 IC C3 38 1C AC
ICAD 3A 08 IEIDCB 32 0B 1E 7%
1CAB CB 27 CD B0 1C C3 C7 4B F4
1CEO C5 47 CD 7D 1D 10 FB C1 OF
1088 C9 34 03 1E %7 1E 20 21 AE
1000 €O 0B FE 31 28 83 21 ED IC
1CC8 08 3E 18 E5 01 00 80 08 33
1CD0 CT 04 1A FD 21 1T OB FD 14
1CD8 35 00 50 FD 36 01 4C FD F7

1CED 36 02 41 FD 36 83 59 FD 81
1CEB 36 04 45 FD 36 05 52 FD DA
1CF6 34 06 20 FD 72 07 04 10 F4
1CFB AF CO 7D 1D 10 FA 06 00 3F
1004 0D E1 DD ES DD 73 90 DD CA
1008 23 10 F% FD 21 1C 18 84 99
1010 08 FD 73 00 FO 23 10 F9 CE
1D18 06 10 AF CD 70 10D 10 FA &B
1628 98 30 29 A8 OE 00 CD 04 29
1026 14 DD E1 C9 21 00 0B 35 45
1030 26 11 01 08 01 FF 03 ED 77
1038 BE C7 3A 01 00 FE 06 28 2F
1048 04 22 18 0C C? 22 29 OC C7
1098 €7 3A B1 00 FE 0@ 2B 84 95
i050 ZA 1B BC 3626 CR 2A 29 T
1038 OC 34 20 C? 234 01 08 FE D?
1060 00 78 94 €D 3E 00 C9 CF 4€
1048 C9 FS 3h 81 00 FE 00 28 A4
1070 04 24 18 OC FL 77 €9 24 30
1076 27 OC F1 77 €7 FS F1 FS Dé
1080 FL1 3D 20 F9 C¥ 7F 25 25 74
1088 20 60 09 o7 1E 18 14 OF 25
1090 6A 00 00 10 27 EB 03 64 3D
1098 16 04 00 01 00 OF D3 D3 42
10A0 20 DC 24 00 06 OF DC D3 &7
1043 20 DC 20 00 89 046 08 9E FD
10BG 28 50 30 30 30 30 30 F 44
1DEB 33 20 20 20 48 49 47 48 88
1000 &3 93 594 20 §3 43 4F 52 20
1DCB 43 Z0 20 20 20 206 20 20 BA
1600 20 20 30 30 30 30 30 2F 4C
1008 33 20 20 20 20 20 20 20 0B
1DEQ 20 20 20 00 01 27 00 40 C5
1DES 00 61 37 01 44 00 01 37 BS
iDFO 61 4% 00 3D 8E 3D 84 B2 DE
1DF2 B 00 90 4D 83 0% 06 63 CF
1600 7F 23 31 31 90 00 00 0A ZE
1E08 41 00 0D 58 08 58 08 Eb DA
1E10 20 6D 80 £4 00 00 60 00 14
iE18 00 0D 90 0D 00 FF FF ED 21

1E20 00 B0 00 FF FF AC OB 90 F3
1E28 FA FE AC OB D1 00 494 FF OB
1E£30 38 0a %A B0 CO FF 34 0B 2F
1£38 A4 00 62 FE RO 08 70 00 CF

1E40 BC FE 24 09 92 09 06 FF D4
1EAR AC 02 ©0 00 FA FE 94 08 74
1ES0 A7 00 47 FF F3 0a E7 00 3F
1ESB 06 FF BB 09 EE 00 7D FE A5
1E4D A5 08 E4 00 BC FF 24 OB FA
1£45 &4 00 A4 FF 34 04 BC 00 37
1E70 7C FE 78 04 BE 00 B4 FE 79
1E78 BB 08 A3 08 ER FE AC OR &9
1F88 D1 60 7E FF 1E 08 CC 00 DE
1EBB BE FE 73 09 84 00 87 FE 4C
1E90 33 DA CL 00 CO FE 2C 09 9F
1598 8E 00 B4 FE EB 08 81 00 07
iEAD B4 FF B4 04 93 00 45 FF B
1EAS 34 0A DB 00 BA FF 20 08 C2
LEBO EO 00 £1 FE ZE 09 BC 00 40
LFEB BE FE 22 09 94 00 04 FF 51

{ECO BD 066 C1 00 41 FF BD 08 57
1ECE BC 00 84 FE B4 08 82 00 39
1ED 7F FF AB 09 C% 00 45 FF 28
1EDE 34 0A CZ 00 80 FF AC 0B AB

{continued on page 47)

