80-BUS NEWS

SUMMER 1985 VOL. 4. ISSUE 2

-
el
gy s
-
o . L
F' EERAEE

-= » w—mmaf%E ICIE *

— el

- T - - -
LEIN . —8 g F‘ll i e ATE AT
L4 IR REEs
% =
! I
" "
3 £

oc
' -

;i!'!vfl'l

rrarere

GM863 64K STATIC RAM BOARD

e BOBUS NEWS ... e

CONTENTS
Page 3 We are talking "Big' programs here!
Page 10 Private Sales and Wants
Page 11 The Final 80-BUS News
Page 11 An Introduction to CBASIC
Page 17 Ad.
Page 18 A Brief Guide to Mailmerge
Page 20 Shock Horror Headlines ~ Dave Hunt on:
LU utility
VIRUS program
Gemini GM870 MODEM
UKM720 comms program
Gemini“s new BIOS, V3.2
Page 28 Special deal on back issues
Page 29 Random Rumours (and Truths)

Pages 30 - 31 Ads.

All material copyright (c) 1985/1986 Gemini Computer Systems Ltd. No part of
this issue may be reproduced in any form without the prior consent in writing
of the publisher except short extracts quoted for the purposes of review and
duly credited. The publishers do not necessarily agree with the views
expressed by contributors, and assume no responsibility for errors in
reproduction or interpretation in the subject matter of this magazine or from
any results arising therefrom. The Editor welcomes articles and listings
submitted for publication. Material is accepted on an all rights basis unless
otherwise agreed. Published by Gemini Computer Systems Ltd. Printed by The
Print Centre, Chesham.

SUBSCRIPTIONS

Subscriptions for the final two 80-BUS magazines only are available. Once
these have been produced subscribers will be put on a Gemini mailing list for
a free newsletter. Subscription rates are:

UK £4 Rest of World Surface £6
Europe £6 Rest of World Air Mail £10

Subscriptions to "Subscriptions" at the address below. Cheques payable to
“"Gemini Computer Systems Ltd."

EDITORIAL
Editor : Paul Greenhalgh Associate Editor : David Hunt

ADVERTISING
Rates on application to the address below.

PRIVATE SALES
Free of charge for 80-BUS related items by sending to the address below.

ADDRESS: 80~BUS News,
c¢/o Gemini Computer Systems Ltd.,
Unit 4, Springfield Road,
Chesham, Bucks. HP5 1PW.

We are talking ‘Big’ Programs here!

by Dave Russ

Way back in the twilight of time itself (about 3 -4
years ago) in a land not too far from here, there
could be found a new breed of creature. They were
in general a happy band of beings, though they
often complained of frequent headaches. You
would not see them very often, except maybe first
thing in the morning or last thing at night, and if
perchance you stumbled upon otie in its lair it
would seem as if the poor creature was in a trance.

Every now and again they would congregate in
cold halls and back rooms and regale each other
with stories until the small hours. These tales were
not of high adventure or epic endurance but how to
coax an extra 1k of RAM from a small home
computer thus doubling its capacity and the
suchlike. For hour upon hour they would feverishly
tell of how they boldly moved in on video RAM and
BASIC workspace and worked wonders on a tiny
system, that once it had set itself up, left you with
an available workspace that was barely into single
figures.

This was the heroic age of the early home
computer world. Now lost forever, I'm glad to say,
though some of the tales still linger on as classics.

However we still Have one legacy from those dark
days, and | am sure that it is one of Murphy's n
laws, and that is whatever system you have, a
program will always expand to fill it. Way back then
all you could do was read routines into available
workspace, wherever it may have been, and
through the magic of having read the manual, link
it all together to give a running program.

Now that we are living in more enlightened times,
~and have acquired our 8 bit CP/M computer, we
now have oodles of memory to play with (We
do?7?), but still we manage to fill it up somehow.
We can now afford to program in high level
languages with little regard for the target object
code size. Fast, tight assembler type code is now
not a prerequisite for an efficient program running
on a small computer.

So we still manage to fill our memory up, but these
days we have better methods of running programs
larger than memory than poking routines into
obscure little corners. This is the purpose of this
awe inspiring {yawn) article.

it may be worth mentioning that | was talking to an
academic type not so long ago who is shortly
publishing a book on Artificial Intelligence. He said

that any machine in design today should be .

capable of addressing at least 16 Megabytes of
RAM. This seems rather extravagant, doesn't it, but

80 Bus News 3

it seems that Al applications are not renowned for
their economy with memory.

Getting back to the point, I'm trying to say in my
own roundabout way that everyone ought to stop
before embarking on a mammoth project and think
ahead a little to the time when the program begins
to get bigger than the available memory. It may
prove difficult to restructure it in six months time,
and so we should consider the use of overlaying or
chaining even at this early stage.

To give an example, | began a test program for
GSX device drivers and at the start | realized that
the main menu would have to contain something
around 40 options. As it stands this is a prime
candidate for overlay techniques, as if | were to add
another 20 options along the way 1 would never
have fitted it into memory as a single program. So
now | have a single menu/controlier program that
reads in and executes options as required. Once
complete the called subprogram is discarded and
the next read into the same memory area.

This approach is by no means revolutionary and is
well established. For example take a look at
Wordstar and diskpen, these make use of overlays,
DR DRAW and DR GRAPH are into double figures
with overlay files in their 8 bit versions.

What to do about it

OK, 1 hear you shout, so my programs are going to
get bigger, what the hell do | do about it??

Well you have a lot of options but they fall into 2
main categories.

1. Program chaining.

2. Program overlays.

Chaining

Program chaining is simple enough in theory but
could prove difficult in practice to implement.
When a program is complete it runs the next
program in the suite. The first program reads the
second into memory over its own memory area
and then executes it. Usually no trace of the
original program remains.

Advantages

1. Easy to use if the language used supports
a chain function. Program creation using a
suitable chain function is simpler than over-
laying.

2. Control flow between programs is easy to
understand.

3. With the use of some clever code a
program management menu could be written
to control a number of applications.

4 80 Bus News

Disadvantages

1. For application programs chaining could
be a slower method of program management
than overlays.

2. Variables used in one program cannot

, lusually) be passed across to the following
- program.

3. The chain function that you use may error
if it does not process the command tail in the
same way as the CCP. For example the
command:

COMP PROG1.COM PROGZ.COM

when issued normally would call the comp-
arison program COMP to compare the two
specified files. Normally the CCP would take
this command and load COMP.COM into
memory at 100H. The rest of the command
tail is placed in memory at 81H with the
command tail length at 80H. The command
tail is then scrutinized and if it contains
filenames then they are put at 5CH and 6CH
respectively. The program is then executed.

When run COMP will take a look at the two
File control blocks (FCB’s) at 5CH and 6CH in
order to get the names of the files thatitis to
compare.

So you can see from this that the chain
command will cause an error if it does not
perform all the above tasks when invoking a
program that requires information in the
command tail.

Using a simple chain module that simply read
in the COM file and executed it reaked havoc
when | chained Wordstar once. Of course the
name WS.COM was still in the default FCB at
5C from the reading operation, and so when
Wordstar took over it tried to open WS.COM
on the disk as a document file, which is no
use to anyone. | had forgotten to fill the FCB's
with spaces before invoking Wordstar.

Methods of program chaining

Of course the simplest method of all is to use a
language that has a chain command incorporated
in it. Beware here, though, for the very reasons that
are mentioned above, they may not work in all
cases.

Referring back to Dr. Dark’s bit on chaining in Hisoft
Pascal (80-BUS News, Vol 3. Iss 4), he gave us a
method by which programs can run each other via
the use of the $$$.SUB file (Read it to find out how)
and also suggested that any variables could be
passed across by first storing them in a disk file.
This is a nice one as it lets the CCP do all the work,
but will only work on drive A:.

| had a peep at the chain function in my ECO C
library just to get some ideas, and here are the
basics of how it works in English. K '

chain{filename)
open chain fiIeVusing default FCB at 5CH.-
if unable to open then error and return:
read loading routine into érea just below BDOS.
set stack pointer below loading routine.
jump to loading routine.
read in chain file.
set stack pointer to BDOS -1.
Jump to program at 100H.
o 30}

You should be able to find a diagram called
‘Principles of the CHAIN function’ somewhere, if
you take a look at that you will see that it represents
a memory map type illustration of what is going on
inside the computers memory.

Program 1 is an assembler routine, conceived from
the above, that will allow you to chain another
program. lt is only a simple demonstration and will
only chain programs that do not expect any
information-to be contained in the command tail.
You will notice that the name of the next program
is held in the routine under the label ‘fcbh:’, this
implies that the name of the next program is
known. It is possible of course to change this so
that any program can be chained from this
standard routine. This routine is deliberately
simple to demonstrate the basics, if a more
complex/universal routine is required then you will
have to add the code required to process the
command tail and put any valid filenames into the
default FCB’s. I'm willingly leaving that up to you!!

You will notice that the default FCB at 5CH is filled
with spaces after the chain file has been read, this
means that Wordstar or Pen can be run without
confusing them with odd command tails.

Program 1 will run on its own for testing or may be
included in a larger program.

In my search for more information on this subject
| took a look at the Gemini Utility program
KEYCHAIN.COM written by David Parkinson, and
later modified by Richard Beal. This program
generates a COM file that, when run, will set up the
Gemini keyboard function keys and then optionally
run a named program.

The original version used a ‘Naughty but nice’
method by which, on exiting to CP/M, the program
altered the BDOS pointer at 06006H to point to one
of its own routines. When the CCP gained control
this routine would intercept all BDOS calls and pass
them on to the BDOS as normal until a ‘Read
console string’ came along (Function 10}. When
this happened the custom routine would immed-
jately return having placed the name of the chain
file or command in the CCP command buffer. This
let the CCP do all the work which meant that a
program could be called using a command tail.
However this program has now been modified, and
the new version (2.0) uses a method similar to the
one that | have outlined above.

| must admit that | have scratched my head a little
on where to put the stack pointer before the chain
program is executed. {Sensible answers only
please.) Keychain V2.0 places it at 80H, and | have
put it 1 byte below the BDOS. As the CCP is only
required to point the SP at an 8 level stack |
suppose 80H would be OK. But in the case of a
general purpose chainer the 16 bytes below 80H
may be occupied with the second filename in the
command tail and thus confuse the issue. |
suppose that the ideal answer is to write a chain
function to suit your particular purpose at the time
and manage the SP accordingly.

And finally, why can't| just read a filename into the
CCP command buffer and then call the CCP? Both
Steve and | had a look at this a while back, Steve
being more conversant with what's what and
where it is in CP/M. Well we tried it a few ways
calling both the first and second entry into the CCP
and neither worked. It seems that the CCP pointer
to the command buffer start byte is changed during
the process of reading and executing the program.
It is not, it seems, restored back to the start of the
CCP buffer prior to the command being executed.

~Thus, the next command that is read into the buffer
is either truncated or lost altogether. Regarding this
concept do not forget that the previous program
may have overwritten the CCP and so the failure of
this approach to chaining is guaranteed if this is the
case.

Program overlays

Program overlays operate on the principle that a
controlling module is always present in memory,
this is usually called the Root module. If an overlay
section is required then the root module will read
the contents of the overlay file {(which is executable
code) into the memory area allocated for overlays.
The root module then passes controf to the start of
the overlay code. On completion the overlay
passes control back to the root module.

If, while you are reading all this gumph, you would
like to refer to the diagram illustrating overlay
techniques, you may find this text more palatable.

80 Bus News 5

Advantages

1. Will run faster than a suite of program
modules chained together.

2. Will allow the overlay routines to access
common variables and utility routines in the
root program.

3. You should be able to pass arguments to
overlay routines.

4. In some cases you are able to nest
overlay sections.

5. The overlay loaders can also be used to
load data files into memory if modified.

Disadvantages

1. The initial setting up of the overall
program is rather complex and can be time
consuming.

2. The individual modules cannot be run as
separate programs as chained programs can.

Methods of overlaying

Now this bit can require a little thought. | think that
an efficient overlaid system should have all the
common variables and most used utility routines in
the root module. This means that they are only
read in once at the beginning. This will keep the
size of the overlay files down and thus speed up the
system. So you are going to have to decide what is
going to go into the root. | know that this has little
to do with the creation of the files but | put itin to
emphasize that there is more to it than hacking the
modules together.

Once again | must state that probably the best way
of doing it is to begin programming in a language
that supports overlays. However this is not always
practical and/or efficient. | know of a few languages
that will do it, namely CIS COBOL, DR PL1 and
Aztec 'C’. There are certainly more but | have not
had the pleasure of yet. Overlaying with these is
just a matter of reading the instructions.

Assuming that all the files have to be created by
hand, and that we are dealing with programs that
pass through the .REL stage on their way to the
executable .COM stage, here is how we do it.

The whole process depends upon which linking
joader you are using at the moment. The Microsoft
LINK-80 {L80} is the most popular, it seems, but
unless I'm wrong it does not allow you to directly
create overlay files. The equivalent Digital Res-
earch product which also seems to go under the
name of LINK-80 does give you this facility.

Due to this confusion in names | will call the
Microsoft product L80 and the DR loader LINK.
These seem to be the more commonly used
names.

6 80 Bus News

180 is much easier to use, which probably accounts
for its popularity, but does not give you the same
facilities as LINK. LINK, for example, will allow you
to generate overlay files (OVL), page relocatable
files (PRL}, and will output a symbol table to disk
which could be useful. | only ever use LINK when
| need to generate any of these special filetypes for
the simple reason that the copy | have demands
that all the program modules are entered at the
start of the loading process and thus is not very
forgiving of the person that forgets to enter the odd
module name or two.

Back to overlays now, | recommend that you get
hold of the LINK program as it will make your life
a lot easier. A word of warning before we start. It
must be realized that whatever source language
has been used the first byte of the overlay file must
be an executable instruction and not a data area as
some compilers will create. Al my 'C’ programs
compile down into MAC files and so | can alter the
data areas to suit before | create the overlays. Not
all of you will have this luxury so beware!

{ will now explain the ins & outs of overlaying using
the DR LINK linking loader. Let’s assume that we
have created a program called ROOT and 3 overlay
modules called OV1, OV2 & OV3, that will be used
by ROOT and are to be run in the same area of
memory. The source code has been compiled and
we have ROOT.REL, OV1.REL, OV2.REL and
OV3.REL on the disk ready to be turned into a COM
file with overlays. We now invoke LINK to do its
stuff by entering the following:

LINK ROOT {OV1) (0V2) (0OV3) <RET>

And off it goes. Easy isn’t it? On completion you
will have created ROOT.COM and 3 overlays,
OV1.0VL and so on. LINK will have resolved any
global references between ROOT and the overlays
allowing an overlay to call routines or access
variables in the ROOT module. All the overlays will
have the same base address and that will be at the
start of the next 128 byte boundary above the top
of the root module.

it is possible to nest overlays using LINK so that
overlays themselves can call in and execute their
own overlays (Complex eh?). | will give you the
example in the book as | have not yet used this
facility and had better stick to safe ground. If you
take a look at the system memory map on the
overlay techniques diagram it may make the
following clearer. By way of an example let’s say
we have a six overlay system; OV1 to 4 are to be
run in the main overlay area, while OV5 & OV6 are
to be run in the secondary overlay area. 5 & 6 are
to be called from OV2. if you enter the following:

LINK ROOT (OV1) ({OV2) (OV5) (OV6)) (OV3) (0V4) 186

5&6 nested above 2

all the overlays will be sorted out for you. Note the
parentheses are nested to indicate the relationship
between the overlay sections.

So you can see how easy itis once you have gotto
this stage but we still have to understand some
more on the nitty gritty to enable us to program the
overlay loader that handles it all from the root
module.

When LINK creates a .QVL file it reads the REL file
and resolves the references as normal. It will
generate overlay code beginning from the start of
the next 128 byte boundary above the root end. The
output file (fname.OVL) is in effect a .COM file but

LINK will have added a 256 byte header to the

beginning of the OVL file. This header area is zero
filled except for four bytes. Bytes 1 and 2 {0 based)
will contain the length of the executable overlay
code, and bytes 7 and 8 will contain the base
address of the overlay code. What you as the writer
of the overlay loader have to do is extract this
information from the header and then read the
code into memory starting at the given base
address. Once the load is complete then you simply
transfer control to the base of the overlay code
using a CALL and away you go. As each OVL file
contains its own base address a single overlay
loading routine is all that is required to load any
QVL file.

The above process is a bit of a cheat as the
generation of overlay files by LINK was designed
specifically to interface with the DR PL-l language,
which has an overlay manager in its library. We can
use it however if we take note of the little
idiosyncracies.

You will notice that the sample overlay loaders
{programs 2 & 6) have the variables ?MEMRY and
?0VLAD in them apparently doing nothing. These
are looked for by LINK and reported as undefined
if they do not exist as globals. The ?MEMRY word
is set to the overall top of program address by LINK
as it is creating the overlays. In other words it tells
you what the top address of the biggest overlay is
and may be used to determine free space or
whatever without jeopardizing any of the program
memory.

| have not got a clue what 7O0VLAQ is meant to do,
if anyone knows, please let me in on the secret. |
have put it in the programs as a dummy global just
to get rid of those undefined global messages from
LINK.

Program 2 is an assembler source listing of a
working overlay loader, it can be used in conjunct-

jon with programs 3, 4, & 5 to create an overlay
demo. If you assemble progs 2,34 &5. and then
enter.

LINK ROOT,OVLAY {OV1}) (OV2)<RET>

The demo will create itself. It only outputs
messages and will not win any prizes but it proves
it works.

Program 6 is an overlay loader written in ‘C’. This
is the one | use for my GSX tester. It uses ‘C's
pointers to functions that allow you to call things
like overlays at absolute addresses and pass
parameters to them if necessary.-Don’t worry if it
all seems like gibberish as ‘C’ can sometimes
confuse, it performs in the same manner as the
assembler version.

Using L80 to create overlays

There is to my knowledge no facility for creating
overlay systems from within L80. it can be done but
is somewhat complex and should be avoided. You
have to hack the code around a lot in memory and
| don't like having to admit that | have done it this
way on occasion.

The basic principle used here is that you load the
root module into memory, and then you load an
overlay in at a predetermined address. All global
references will now have been resolved. You now
exit L80 having saved the program. Using Gem-
debug, ZSID or DDT you take the program file and
move the overlay code down to 100H and SAVE it
as a separate file. Messy but it works. May | suggest
at this juncture that while you are messing about
with the overlay, you create overlays that are
compatible with the LINK format {see previous for
details).

Using the sample assembler programs lets create
the programs using L80.

1. Assemble all programs to REL format.

2. Enter the following:
L80 <RET> Run L80

Load root module
and overlay loader

ROOT, OVLAY<RET>

At this point you will see where the top of the root
module is by looking at the Data readout from 180
(in this case it is 01BE). We have to decide where
the overlay base is to be. Lets put it at 200H and
keep things nice and simple. To do this enter:

/P:200<RET> Meaning load nmext bit at 200H.
OVICRET> and load in the lst overlay.

ROOT/N/E Save ROOT.COM and exit.

80 Bus News 7

Now we have to create the overlay from the COM
file using a debugger. | have used Gemdebug to
create LINK lookalike overlay files. This is how it is
done:

BUG ROOT. COMCRET>

F100,1FF,0 Fill 256 byie header with 0's

Now move the overlay section down to 200H using
the M command. In this case we have been lucky as
the overlay was originally loaded into 200. If it had
started at 0760H for example we would have to
enter:

M760,800, 200<RET>

assuming that the overlay code finished at 800.

To maintain LINK compatibility we now have to
insert the information concerning the length of
code and the base address. To do this use the ‘S’
(set) command to insert the details. Our-overlay is
12 bytes long and its base is at 200H. We set 101
and 102 to 12 and 00, then 107 & 108 to 00 and 02.

We now have a .OVL file in memory and we are
ready to save it, enter:

SAVE 2 OV1.0VL

and the process is complete.
Repeat this for OV2.

Now create the economy version of the COM file by
entering:

L80 ROOT,OVLAY,ROOT/N/E

and its all ready to go.

Not very pleasant is it? It involves a lot of effort and
no mean amount of Hex arithmetic to calculate the
sizes of the files for the move and save commands.
As all this is done for you by the LINK program may
| suggest again that you go out and get it and avoid
the above.

g8eesew pr jndino !

sesuy ‘ap
80 "0

Pt

pI
1140

0gz’

(OVW'LAO}

‘wesBoid owap 10} Aepano 15| 'y weisboid

SoUeURTTy ARTJOAD |

W/dD 01 31X8
utede JepeoT TIED

SWRUSTT] ARTJSAD ™™ Y}1A q0) prof !
Jepyul ABTJISA0 11RO

sueuaT1) ABTJIBAO 18T UITA QOJ pEOT

a8essu. 3004 1ndino

‘€101 300 U,

pus
wyep :ssou

0410 CAOL 0 ujep 1Y
0" VTAO TAG O qjep TIY
0 d¢
J#heTA0, 1180
11pY
£1'0q P
2Tl T PT
4yog "ep PT
##LRTACy 1100
J1p1
2109 b1
113 ' Pl
yog ‘ep 29
€000 TR
60 0 pT
ssaw 'op p1
11300
082"
(OVIN'LOOH)

‘owsp Aejisao 10} ajnpow jooy ‘¢ weiboig

umouy 10U UOSEaY ~ STYY 10J SHOOT WU

BI8Y §S8IpPDE
wesgoad jo doy ey} ynd LA WNIT

: 4

‘8,101 871y Aetasnc uado o3 srqEUp,

SUTINOL JOII® ST1]

80 Bus News

J01088 € pesd

‘woTyondisut snotasad eyl Aq Jppe
e58q ABTIBAC 8Y} 0} PBIsjle uUseq eAey
“TTTH SSOJPPR 0000 BYL ABTISA0 83 TTRD

8

BoJE BEP TTRO OY} OUT 31 8314 pue

sopq
sowlde '8p

60 "0

sopg
qo ‘ep
Wt o

0000

fOTH T (T+1TROAO)

pue

538p
LIQBTACE

sj8p
LiRawmewy

wjep :sewlls

181

T1R0

pT

P1
131871)

181

1180

P

41
1005188

184

1te0
ITTROAC

348

seouds UYITH €04 TTW

1Inejep 01 VRQ 1888l

118} pusmwos yi3ust O

10108% JBYI0UY PYsJ 08 PBYSTUT) j0u

s834q g21 dn Jsjutod Ayowew saou
dooT 31X8 08 S8k -
45 409088 j8BY

101088 jXeu pesd
Jppe KJowsw jUBIINO 0} BWP 188
£JOWSW U} UT 10}088 € puay
vaJe weddourd jo jdeys o} syuted Ag
Futuutdeq Apod . wods
apod J8Jsurly ST Butsollod
1T 93n09Xe puw
T4 0} Jppe 8poy Jejsuedy
RAJE HORIE OJUT APOO 1BJ5ULL} pead
opos J8JSUBLY JO 43BUSY SUTRIUCD 0§
8pod Jejsuedy Jo pus o0y juted M
149000 wody 3% waw yo doy o} 3q jutoed

PJAODAL JusLIND 0}

(pRUANYBI X8y 441 Joude usdo uo winiel

811 uteys ayy dn uedo

4ogD 32 M00Tq Todued 1Yy
1INEJLp O1UT S18p STTJ UTRYD peOT

1oTquasse (8N
0} TeqOT3 sB uTinOt seyy
4OTOD BTQUOP 'BUTINOL JO }dE}S

904 UT 834AQ pJOSAL jusLInD
#o0Tq TO43U00 811) 3TRRJRQ
sseappe dunl goad

24
HOZ e
: HOg ‘1Y
$0pQ
ger ‘o
: qog ep
® O {408)
: 0'e
295pd
M ep
8p "1y
. g "
: paLTI) ‘2u
: ®
sp
sopq
LiAGN
qoj "ep
50pq
N LAY
ap
uootT ep
: 1y cds
: {14
14 "ep
8p
. Beqpoo-puspos "oy
: puepso Ty
ap
! {T+80p0) "8
£ 1081d00)
: B
RETEL
: e
s0pq
ujoon ‘0
: qoy ‘ap
£ '5q
yao) "1y
' qo) ‘ep
: 4oz+ady
42600
: 4gooo

nbs
nba
nbe

e L e

Pl
[
Pl
Tieo
PT
Pt
Bl
PT
PRI

at
%)
epR
PT
at
Jo
dod
118D
Pl
[
1182
P1
ysud
1088pd
PT
P
‘Baypoo

4r
x
sut
4pp1
8
Pl
S0P
Pl
P1
20X
dt
ot
11D
P1
4
11p1
vl
Pl
¢

siuteyd

981402
qoJ
sopq
08z’

‘weiboad Jayioue uleys o) aunnos v 'L weiboid

suonoun} Aepieac pue uieyd Joj sbunsy weibouy

9

80 Bus News

Jx daying andut Jo 4 eidq o3 juted x/ tp=tdjdTesep
/% 11 w0a] Y1BusT apod jovIiNe ¥ 0 %/ t13dT R RpR=USTAS
/% $338q 821 181 pesd ¥/ (8217 3inq pIoipead
/% 8pod 104Je uinjet puno) jou Jtr ¥/ C{d0H¥E I wIRIed [40F==PIO 1T
/% 811) Retisao usdo x/ HIAINOTQY3Y sweng jusdo=pjo

/% UT 37 pe8J 0} sAYy on 8STE x/

ged
/% J811e0 0} uanyad pue x/ LMo juanyal
/% uoTOURS BYY [1e0 usUl ¥/ SHHQeTAO™ R)
Lgd
/% peyssnbes ey} Se AwWes ST ¥/
/& Elowsuw uy AeTIeAD juslInd 8y} JT »/ { Qe { BWRYS * TACIIND WO IS=UBTAO} T

/% 8utinol AeldeAs Jo 1i¥38 &/

/x dogyng qudur ul SenTeA JUT %/

/% ss8vor 0} pesn 1sijutod JsBejur ¥/ HTlinag=aidRieps 3T

/% Jajyng jndut TRo0T ¥/ ‘{8z1l3ing Jeyo

/% Re1deas jueluns Jo swWeu s8loys x/ 1{9T]Ta0ddnD Jeyd 21338
/% 6p00D AOC 3O Y18usT 41035 03 pesh x/ TUSTAC U
/% a03d1aosep 271y ARTISA0 aJRINeD %/ ‘plos F1I4
Led

1OWRUJ ¥ JBYD

/% 3Je se pessed oweu 97T ABTJIoA0 x/ (oweuy) feran™

/% "BuTMuTy usys wesBoid WNIT 8y} »/
/% 0} PBTJTIUADT ede Asyy jey) 08 x/
/% 1eqotd su pesuyosp eJe 9wyl ¥/
/% NI Ag wew Jo doy 03 3185 x/ CKawew™ U
/% ounj o3 Jejutod sv pesn QETAL: ¥/ T{){QRTAD™ %) UT

T HO sunjspé
0 HO¥Yd sutjepg
O ATNOTTQYRY suTjepg

‘AHWIW{ W0} 1081100 S} 01
pelg[suesl St AJWSW™ 08 pue ¢, O} SBLUBU B|GELIBA
U] 58J00SIBpUN ||B $8IR|SURI]) 0D JBY) 810U asE8|d

‘(pesn 0,
093) "9, Ul usliMm 18peo] Aepaac uy ‘g weaBoid

pus
18 °STI0T (240 U, wjep sseuw

1001 0] wInjer ! LEN
§000 Tteo
S8BY ‘8P PT
sBesseuw py 4ndino ¢ 60 ‘0 Pt
1ZA0
) 082"
(OYWZAO)

‘wiesboid owsp 10} Avpeao puz 'g weiboid
pus
18, 7ST70T 7 140 UT, ujep lsseuw

100d 0} UIn}8d ! 18d
G000 1res

ssouw 'ap pT

1Y 03Ut Jppe eseq syy dod 14 dod

Jayjoue 308 08 o3 ou TAOPI 'Z af
10095 }SET 8Y} 31 SEem B 3o
At1etiusnbes T4 ‘ep %9
SJOWBN 0}UT PESI B8JE S103088 ABTISAD ap Ty ppe
1Xeu 8y} 1BYY 0% 31 03 821 ppe pue 821 'ep PT
JIppe 18jjng elojsal ! T dod
101088 ® peas PEERL] 1189
s0pq TTes
BOIR 18)ING JUBIING BWD 18§ yey o PI
Jppe 18)jNg jUBIIND 81035 ap ysnd

ITAOPI
eade ABJBAC JO JDPY 9SBQ BJOISHS ap dod

8p05 JO 1415 1B MOU BJE aM

9144 821 bug pess 088798 TR0
4o 93BT Tred AByisA0 8y} 407 utede pue ! 1y ys~-
IpPE Jajjng $E 8OUO ‘1T 8J40}S puE " @ 14 ysnd
8poo Jo aded eseq 388 ! {y8) ‘14 pT
s34 w1 18] pead o888 1ten
80pq TR0
yog '8p PT
4o 03 J8JJnq BWp j8% ! yer ‘o Pt
B (081JN0) PI
pP10%8I juesIno 03 § nd] 10%
13871) % de
punoy 30U 11y J1 Jodds B out
sopq e
Qo) “ep 22
811] Aeyieao usdo Yo ‘o T

CiReTany

qoJ) Ut 834AQ PJODBL juszand 204407 nbe DaIND

s00g o1 Anue 4so nba sopq

qoJ jTnEJep sJdeyvap Y080 nbs q0)

oz’

(OVIW'AYIAD)

*18pROo} ARJBAO UR JO UOISIOA 19|qUIasSSY " weiboid

pus
1eWI0] ghd 0 qjep
W/dD PIEPURIS UT ST STY} -20N VRODTIANIYHO . wjep
TUTBYD 0% BTTJ BYY JO SBTTRISP 0 qiep 1440l
J$10119 usdo aIT] PAuUTRYY, ujep dswiis
1841
sopq 1180
69 P1
dewits ‘ep pT
SUIN8L R SSBU 10418 sindino : touedo
dou
; puapoo
. wesBold 81nosxs . 4001 df
ds 08p
T~ SOPq 03 4§ 188 ! {4000} ‘ds Pl
o311y zulp
It out
e {1y) PT
1qoJTIy

10 80 Bus News
Oops!

This page should have contained a diagram to illustrate the text of the
surrounding article! Unfortunately it has been mis-placed, and the author has
not kept a copy. However, he assures me that it is not essential and so,
rather than leaving a blank page, we will take a short commercial break!

Private Advertisements

FOR SALE

GM803 EPROM Card, Real Time Clock Module by EV Computing for GM812, GM805 case
with 2 Pertec FD250 disk drives and mains PSU. Software and data available if
required. Tel: C. Bowden 0209-860480.

Nascom 2 with RAM (cased). EPROM blower. Level 9 BASIC, ZEAP, Assembler, Dis~
assembler, NasPen, Toolkit, SYS 3. ROM or EPROM. Most of a Nascom 1, ¢/B i/f,
Merseyside ROM board, no PSU. Tandy DMP110 & CGP115 printers, little used. APF
10" monitor. Sanyo and Sharp cassette recorders. Manuals where appropriate.

All in good or very good condition. Sensible offers please. Tel: J. Turner,
South Elmsall (0977) 45424.

Nascom 2 in Kenilworth case, 5 card frame, 3 inch fan, 32K RAM A board, 3A
PSU, Nas—-Sys 3, BASIC ROM. ZEAP 2, Nas-Dis and Nas~Debug in EPROMs. CCSoft
Graphpac on cassette. 12" B/W TV converted for use as monitor/TV. Complete
sets of INMC, Micropower and 80-BUS News magazines + Nascom Program Books +
some tapes. £250 or offers. Also Bits and PCs EPROM Programmer for 2708 or
2716"s, built but not tested. £20 ono. Gemini GM803 EPROM board kit — Brand
new, still boxed. £50 omo. Tel: Steve Wright, Horsham, W. Sussex (0403) 69148
evenings or weekends.

IVC with EV beeper and installed EV Real Time Clock/Calendar. Fully
programmable, inc. documentation and disk demo, £110; CPU card (GM811), RP/M
V2 installed, £50; MAP FDC/Video card, FDC only populated, £90; Juki 6100
tractor paper feed (New — boxed), £70; Cannon 210, 40 track double sided disk
drives 500K unformatted, two at £60 each. All ONO and in excellent condition.
Tel: Dave Birch on 051-709-4465 (evenings).

Micropolis 1015 400K (new drive belt, good order) £90 ono, 2 x 48K RAM B
Boards with Page Mode £85 ono, GM805 Henelec Disk System & ROMs for Nascom 2
with CP/M 1.4, Utilities, Assemblers (M80 etc), Languages, Forth, Fortram, G,
Pascal, BASIC, £75 ono. Also PHG Sound Board very cheap, Philips DCR Cassette
Drive & Controller — even cheaper. Any offers considered. Tel: Ian - Ipswich
(0473) 831353.

Galaxy 2 Micro, 2 x 800K diskettes, amber screen, two years old but only
lightly used. Offer includes 20 diskettes in protective boxes and CP/M and
Wordstar/Mailmerge software. Offers around £750 please. Tel: Worcester
(0905) 830612, evenings or weekends.

WANTED

AVC, IVC and disk system + CP/M 2.2. Eric Wright 091 285 3762.

_ovla0=kdata_ptr; /k ..& write base addr into the %/

/% function pointer %/

read{ofd,buff,128);
/% no use for these %/

read({ofd, _ovla0,ovlen); /% Read ovlen bytes into area %/

/% pointed to by _ovlal */

/% read the next 128 bytes. We have */

closefofd}; /% close overlay file %/
(*_ovlal){}; /% call overlay */

strepy{currovl, fname}; /% update the current overlay name */
return{0K}; /% return alls well to main prog %/
p38

Final Issue

Please note that we intend the
final issue of 80-BUS news to be a
little silly. (Yes, OK, I know that
virtually every issue has been
silly, but that”s not what I mean.)

1f you have any Nascom/Gemini etec
related tales that you think will
give other readers a chuckle then
please send them in. Nothing
libellous though please!

You might 1like to relate an
anecdote on the troubles you have
_had building up your system,
getting to grips with software,
mis-understandings with the Mrs.,
or how YOU had to explain to the
dealer what a RAM chip is!

I can certainly remember certain
things; like the user who soldered
his Nascom 1 together with all the
components on the wrong side of the
‘board. And another who melted a
load of solder in a frying pan, and
then dipped his Nascom 1 into it to
"flow solder" itl!!

80 Bus News 11

An introduction to CBASIC
by P.D.Coker

CBASIC is one of several dialects of BASIC
available to users of 80-BUS machines. It origin-
ated from the fertile mind of Gordon Eubanks Jr.
and first became available to micro users in 1977,
quickly followed by an enhanced version, CBASIC2
in the latter part of 1978. Dr Eubanks had developed
the idea of a type of compiled BASIC as part of his
doctoral research, soon after CP/M had been
released on an unsuspecting public, and this
becarmne known as EBASIC but has now been
almost completely superseded by CBASIC which
has many enhancements and is more suitable for
programming purposes. CBASIC2 was originally a
product of Compiler Systems Inc., the firm which
Eubanks founded in California but is now under the
tender care of Digital Research Inc. In this article,
CBASIC refers to the second release, CBASIC2. An
expensive but versatile version including a true
‘native code’ compiler, known as CB-80 is also
available from DRI.

Most people will have heard of Microsoft BASIC
{MBASIC) in one or other of its forms, and once one
becomes familiar with the quirks and deficiencies
of the particular version one has available, one's
style of programming adapts accordingly. So why
bother about another version of BASIC? Certainly,
for many purposes, MBASIC performs quite adequ-
ately as an interpreted language, with the option of
a compiler, while CBASIC is a ‘pseudo-code’
compiled (sometimes known as ‘semi-compiled’)
language.

Unlike compilers, interpreted BASICs allow the
programmer to develop and test sections of a
program immediately using the built-in line editing
facility, and syntax or other errors can be spotted
when the program or segment is RUN. On-screen
editing is available to enable offending lines to be
corrected. Additionally, MBASIC has a means of
compacting the code as it is entered, to save time
and memory when the program is executed. From
almost every point of view, a satisfactory situation.
What are the drawbacks to this paragon of
virtuosity? Essentially, the interpreter has to
evaluate each line as it is executed, and this can
slow down the execution speed of programs which
handle large amounts of data or, more importantly,
those in which loops or calls to subroutines, more
familiarly known as ‘GOSUB ... RETURN' occur.
This can be significantly changed by converting the
program after it has been fully tested in to a
‘compiled’ form, where the program is efficiently
compacted and {in a true compiler), converted into
machine code instructions. CBASIC does not have
a true compiler, but instead produces an efficiently
packed code from a source program which is

12 80 Bus News

entered using a text editor such as ED (if you must)},
WordStar or PEN. From the source code program
(which must have the extension type .BAS), it
produces an .INT file in which, for example, 'PRINT’
is stored as 1Ah. The logic behind this is that it
takes a shorter time to interpret 1 byte such as 1A
when the semi-compiled program is run than it
does to deal with 5 letters as in PRINT. To use the
language, you need to:

1. Write a CBASIC source program.

2. Use CBASIC to produce the inter-
mediate (INT) file.

3. Use CRUN to execute the .INT file.

CRUN is a run-time interpreter which takes the NT
file produced by CBASIC after checking the source
code for errors, and converts it to machine code.
The pseudo-code compiler/run-time interpreter
combination is a compromise between the readily
alterable but slow-running interpreted and the
fast-running but not easily alterable compiled
versions of BASIC.

The same procedure could be used for EBASIC,
which, | believe, is available as Public Domain
software at a very modest charge from the CP/M
Users Group.

CBASIC appears to be more cumbersome in use
than MBASIC, but it has a number of very usefu!
features which the latter lacks. The major use for it
has been in the field of business applications
software where its speed of execution and facilities
have been most favoured. Unfortunately, it is only
available for disk-based CP/M systems.

The language takes a little getting used to and |
would not recommend it to anyone who has less
than a good grasp of BASIC: until one is reasonably
familiar with its syntax and little peculiarities, it is
best not to use some of the more advanced
features. In the following pages, | have attempted
to provide some information on CBASIC and
MBASIC (disk version) statements and commands,
where they differ or where they are peculiar to
CBASIC. CBASIC has an excellent, if expensive
User Guide by A. Osborne, G. Eubanks and M.
McNiff, published by Osborne/McGraw-Hill in
1981. It is rather costly at £12 (in 1983) for 215
pages but is essential for the serious user. The
Guide deals with version 2.07 of the compiler; |
have used version 2.02 only, but | have not found
any major problems or incompatibilities. The
version number of the run-time interpreter CRUN
used in the book is not stated but mine was 2.04.

Data types

Both BASICs support integer and floating point
(real) numbers, with exponential notation for the
latter. The range for integers is the same in both
(+32767 to -32768), but real numbers are stored by
CBASIC with an accuracy of 14 digits, compared

with 7 for single precision and 17 for double
precision MBASIC. Exponential range for MBASIC
is 2.9387E-38 to 1.70141E38, whereas CBASIC has
a range from 9.9999999999999E62 to 1.0E-64,
which could be very usefull!l Both BASICs allow
hexadecimal notation, but CBASIC allows binary
and MBASIC permits octal notation in addition. All
three are, of course, special ways of representing
integer numeric data in BASIC.

Names of variables may be up to 31 characters
long in CBASIC; although in MBASIC they can be of
any length, only the first two alphanumeric
characters are recognized; some characters are not
allowed but who wants to use *,l,@ or & in a
variable name? Both BASICs use the $ sign to
denote string variables, and integers may be
explicitly declared. This is done in CBASIC by
adding a % sign to the end of the variable name
{with not more than 30 preceding characters}; in
MBASIC, the DEFINT statement does this. The
ability to use variable names like ‘microcomputer’,
‘collywobble’ or ‘knightsbridge’ may appeal to the
whimsical but unfortunately, ‘supercalifragilisti-
expialidocious’ is too long and would be truncated!
Variable names should be distinct and descriptive,
which will help you understand the flow of each
program you write.

DiMension statements have virtually the same
functions in both BASICs; a little appreciated fact is
that it is possible to use a constant or a variable to
declare the highest subscript for an array or vector:

2%=50
DIM SORTCODE${Z%) . HOUSENUMBER(ZZ)

or

Z%(1}=50
Z%(2)=5
DIM SORTCODENUMBERS$(ZZ(1).Z%(2})

Statement construction

Line numbers are optional in CBASIC except where
the line is referenced by a statement elsewhere in
the program. An additional and somewhat bizarre
feature is that the numbers can be in any format —
integer, real or exponent, but there must be less
than 31 digits.

A single CBASIC statement can be spread over
several lines by the use of the backslash (\) and
lower case letters are converted to upper case
unless the ‘D’ toggle is used.

IF REPT =0\
THEN GOTO 999

There seems to be no limit to the length of a
statement but keep it within reasonable bounds
otherwise your source will look like one of those

}

nasty Beeb programs! An additional, useful facility
is that text can be put after the backslash — a subtle
form of REM, and, as in MBASIC, two or more
statements on one line must be separated by a
colon.

IF REPT = 0 \ Check for repetition
THEN GOTO 999: PRINT"REPEATING TEST"

The statement can start anywhere on the line— but
it is obviously better to use the first 80 columns.

Data I/0

Both BASICs use the conventional PRINT statement
with semi-colon or comma separators; in CBASIC,
the comma indicates a move to the next printing
field which is every 20th print position and the
semi-colon leaves one space after the last printed
item and then starts printing again. PRINT USING,
WIDTH and TAB are also supported by both but 3
statements, LPRINTER, CONSOLE and POS are
specific to CBASIC. LPRINTER directs all PRINT
statement output to the printer until it is cancelled
by the CONSOLE statement which routes it back to
the screen. LPRINTER assumes a print WIDTH of
132 characters unless a lower figure is set {e.g. 80):

LPRINTER WIDTH 80

CONSOLE assumes a screen width of 80 characters
unless otherwise directed.

The POS function is used to identify how many
characters have been printed or displayed on a line
— useful if you want to see how much space
remains. | haven't used this facility very often!

File handling

in CBASIC there are two types of file, sequential
and relative. Their use is rather more straight-
forward than in MBASIC. The sequential file type is
better in terms of disk space usage but the relative
file can be read or written to at random since it
assigns a fixed space to each possible record. The
following remarks apply broadly to both types of
file but OPENing or CREATEing relative files
involves the RECL parameter in which the record
length must be specified:

100 OPEN "A:ADDRESS.LIS" RECL 128 AS 3

.Files are opened using CREATE, OPEN or FILE

statements and closed by CLOSE {and CHAIN or
STOP if these statements occur in a programj.
CREATE, as its name suggests, sets up a new file,
deleting any previous file with the same name,
OPEN — well, it just opens a file which has already
been created in the directory. FILE is very useful
since it will CREATE a new file and OPEN itif it does
not currently exist — and it will OPEN a file for /O
if it exists. All these commands can be used to
operate more than one file at a time.

80 Bus News 13

OPEN and CREATE have the same syntax, but FILE
does not need the identifier to be specified — it
does this automatically:

OPEN "B:TEDIOUS.DOC" AS 2
CREATE "A:TEST.DOC" AS 1
FILE "A:DAVEHUNTSBITS"

In the first two cases, a file and drive are specified
and given a numeric identifier — thus TEDI-
QUS.DOC was originally set up on disk B and has
the identifier 2 — which will be used for sub-
sequent file operations using READ # and PRINT
#:

the file on drive A called DAVEHUNTSBITS will be
assigned 3 as its identifier if it was in the same
program; this is because it is the third file to be
specified.

READ #2:A$ - reads string variable
A% from file 2 which in
this example, is TEDIQUS.DOC
PRINT #1;A$ - writes the same string
variable to file 1 - TEST.DOC

PRINT USING # is a very useful facility if you have
a number of different types of output format to
include; both PRINT # and PRINT USING # are
limited to a maximum number of 20 file identifiers!
To CLOSE a file, simply type CLOSE dfile ident-
ifier> — very neat and just like MBASIC.

Other useful statements are DELETE <identifier>
which enables one to delete files when they are no
longer required in a program and INITIALIZE which
allows one to change a disk without causing the
system to become bewildered or risking the
scrambling of directories. One can also RENAME a
file, determine its SIZE in 1 Kbyte increments, or
employ the IF END # statement to do something
mind-boggling when the contents of a file have
been read and Marvin or whatever you call your -
machine is about to become seriously confused!

RENAME {NEWFILENAMES, OLDFILENANES)
PRINT SIZE("FILENAMES")
IF END 2 THEN 999 \STOP THE PROGRAM

CBASIC defaults to a record fength of 128 bytes for
RECL; additionally, one can specify the data buffer
length and sector length using the BUFF and RECS
parameters; these follow the numeric file identifier.
Further information on file handling can be gleaned
from the Guide.

Numerical operations

The major differences between the two BASICs are
in the field of relational operators (less than,
greater than etc.). The conventional combinations
of <, > and = are supplemented by letters:

14 80 Bus News

MBASIC CBASIC
= = or EQ
< {or LT

= {= or LE
& & or NE
> > or GT

D= >= or GE

The same letters are used for relational operators
in FORTRAN which also uses the same set of
logical operators — NOT, AND, OR and XOR — as
both the BASICs.

Intrinsic functions

Most of the intrinsic functions in CBASIC are found
in MBASIC. The exceptions are as follows:

FLOAT — converts an implicitly declared integer to
its real number equivalent; if a real number is used
instead, it is converted to an integer and then
reconverted to its real equivalent.

INT% — this truncates a real number at the decimal
point and returns an integer result. If a real number
is to be converted, it is first converted to a real
number before truncation. Note that this is not the
same as the INT function which actually produces
a real result.

This highlights the fact that unnecessary convers-
ions and other operations will slow down a
program, and to minimize this, one should make
sure that any conversions are done using the right
type of number.

User-defined functions

These are almost identical in both BASICs; the only
major difference is that, in addition to the letters
FN, up to 29 other alphanumeric characters may be
added in CBASIC.

String functions

Compared with MBASIC, CBASIC has several more
string functions; the following will give some idea
of the flexibility of this aspect of the dialect:

COMMAND$ — returns the CP/M command line
without the name of the CP/M program being
invoked. You probably won't use this a lot.

MATCH(A$,B$,1%) — looks for string A$ starting at
the 1%th character in string B$. If it is present, the
function returns the position in B$ of the first A$
character; if it is not present, the value 0 is
returned. :

SADD(A$) — returns the starting address in
memory where CBASIC has stored A$.

UCASE(A$) — converts lower case letters to upper
case in string AS.

Program logic

in addition to the normal IF ... THEN ... <ELSE>
statement, CBASIC has an amazing feature called
the Compound {F statement where many comp-
arisons can be made. A program which illustrates
this and the use of other CBASIC features may help
explain this very useful facility:

REM Silly program in CBASIC to illustrate
REM ompound IF statement and other features.
INPUT "ENTER THE VALUE OF THE COIN ™.

COIN.VALUEZ
COIN.COLOUR1$="GOLD-COLOURED™ : COIN.
COLOUR2$="SILVER"
COIN.COLOUR3$="BRONZE"
PRINT"YOU INPUT A VALUE OF ";COIN.VALUEZ
IF COIN.VALUEZ GT THAN 100G \
THEN PRINT"CAN'T DO THIS ONE!":GOTO 999
IF COIN.VALUEZ= 20 OR 100 THEN GOTO 10

IF COIN.VALUEZ=5 OR 10 OR 50 THEN GOTO 20 —

IF COIN.VALUEZ=1 OR 2 THEN GOTC 30
10 IF COIN.VALUEZ=20
THEN PRINT i
"YOUR COIN IS A 20p PIECE AND IT IS A™:
PRINT"DIRTY YELLOW COLOUR":GOTO 999
IF COIN.VALUEZ EQ 100
THEN PRINT"YOUR £1 COIN IS ",
COIN.COLOURLS:
GOTO 999
20 IF COIN.VALUEZ EQ 50 3
THEN PRINT"YOUR 50p COIN IS ":\
COIN.COLOUR2$:GOTO 999
IF COIN.VALUEZ LT 50 \
AND GT 5 THEN PRINT:
"YOUR 10p COIN IS *;COIN.COLOUR2§:GOTO 999
IF COIN.VALUEZ = 5\
THEN PRINT"YOUR 5p COIN IS "%
COIN.COLOUR2$:GOTO 999
30 IF COIN.VALUEZ LT 5 THEN PRINT
"YOUR COIN IS A ":*
COIN.COLOUR3S:
IF COIN.VALUEZ NE 1t
THEN PRINT" 2p PIECE"
IF COIN.VALUEEZ EQ 1 THEN PRINT" ip PIECE"
999 END

Another useful pair of statements found in both
BASICs, is WHILE/WEND; they are essentially a
variation of the FOR/NEXT statements and will
allow statements inserted between them to be
continually executed as long as the expression
following WHILE is logically true. As soon as it is
logically false, the sequence terminated and the
next statement after WEND is executed. This is
quite a nifty idea and additionally, Compound IF
statements can be included between them. The
following example illustrates the action of the
WHILE/WEND pair:

N=0

1 WHILE N LT 10
Ne=N+1
PRINT"N = "N
GOTO 1

WEND \SKIPS OUT WHEN N = 10
PRINT"THAT'S ALL, FOLKS!"
END

WHILE/WEND loops can be nested in the same way
as FOR/NEXT loops.

‘Subroutines’

The use of GOSUB...RETURN as a form of
‘subroutine’ in BASIC has been the subject of much
hot air and plonking arguments, culminating in the
DEFPROC/PROC/ENDPROC to be found in BBC
BASIC. If used properly, there is nothing wrong
with GOSUB, whether straight or computed.
CBASIC has an additional feature over MBASIC and
this is the muitiple-line function. This clever device
enables those who are allergic to the use of GOSUB
to define the ‘subroutine’ function as follows: (note
the full stop between the FN and the dummy
argument) :

DEF FN.CROSS.SECTION(AREA)

In this case, the function name (in this case,
CROSS.SECTION) is followed by a dummy arg-
ument, AREA, which is a real numeric variable used
within the function and CROSS SECTION is treated
as a variable which may have values assigned to it
within the function itself — in this way, values of
variables needed within the ‘subroutine’ can be
input without the need to define them in assign-
ments. Constants or expressions cannot be used as
dummy arguments — only variables can be used in
this way. The variable can be a string, integer or
real type and is treated as local to the function, and
only able to be modified within the function. The
_function must be terminated with a RETURN,
followed by FEND; FEND is not executed under
normal circumstances but if RETURN is missed out,
then CRUN will send an error message and return
to CP/M.

Initially, the use of multiple line functions seems a
little difficult but with experience, the advantages
of the facility become apparent. Essentially, the
CBASIC function follows the FORTRAN method.
The User Guide is reasonably clear on the use of
_this type of function, and provides some examples
of its application.

Overlaying and Chaining

In spite of the suggestive names, these have
nothing at all to do with S%xX, kinky or otherwise!
Overlaying is employed when a program is too big
to fit into the available memory; the program is

80 Bus News 15

broken down into smaller units, called overlays and
these are stored as separate, compiled programs.
An overlay is called when the previous program
reaches a CHAIN statement which explicity names
the overlay in question before it completes its
execution. The new overlay can end by calling yet
another overlay, or the previous one or even by
stopping program execution. Two important points
should be borne in mind before using overlays in
CBASIC.

1. An overlay overwrites the previous
program but the previously used prog-
ram can pass data to the overlay by
means of COMMON statements which
leave the data in memory; these COM-
MON statements must be in both the
calling program and overlay.

2. Memory usage is slightly restricted
by the use of overlays; full details of
this are to be found in the CBASIC User
Guide.

CHAINing allows COMMON variables to remain
intact while the area of memory used for storage of
file buffers, strings and arrays is compacted. If the
%CHAIN directive is used, the system cunningly
instructs the first of a series of programs to
determine the maximum storage capacity of all
following program overlays; this maximum figure
will be used to determine how much memory will
be allocated to each of the areas required by the
program suite.

In its simplest form, CHAIN is used as follows:

REM FINISH PREVIOUS PROGRAM THEN
REM LOAD NEXT OVERLAY
CHAIN "NEWPROG"

An arrangement which allows an overlay to be
loaded from a different disk drive follows; this
assumes that the logged in drive is A and that the
next program resides on drive B:

DISK.DRIVE§ = "B:"
INPUT"NAME OF NEXT PROGRAM":PROGRAM.NAME$
CHAIN DISK.DRIVE$+PROGRAM.NAME$

The COMMON statement is not found in other
BASICs, and its use follows the FORTRAN prece-
dent as being the first statement in a program,
agreeing in type and sequence in both sending and
receiving programs. Thus if variables A, B$ and C%
are produced by the sending program, the receiv-
ing program must have either the same variables in
the same order or different named variables of the
same type in the same order, i.e. X, Y$ and Z%.

Array variables in COMMON must be followed by
one parameter which specifies the number of array
subscripts, and these must appear in a DIMension
statement.

16 80 Bus News

COMMON A,B{1),C%.D§, E%
DIM B{10},E%(2,3.4}, 10)

Creating and using library programs

in CBASIC one has the ability to include programs
— such as graphics or screen handling routines
which one may have written or acquired. In this
sense, CBASIC operates in much the same way as
the better versions of PASCAL or FORTRAN. Any
library programs may be incorporated by means of
the %INCLUDE statement; it is important to make
sure that the INCLUDEd program (or program
segment) does not include a STOP or END
statement — for obvious reasons. Up to 6 levels of
%INCLUDE nesting are permitted which should be
enough for most people!

Other statements, functions and directives

CBASIC is full of other goodies to excite the keen
programmer or to depress the less able! Some
useful ones are listed briefly.

Statements

CALL — summons a machine code routine, and has
the syntax:
CALL <integer expression> — the express-
ion may be in hex

INPUT ... LINE — reads an entire entry from the
display and assigns it to a special string variable.
INPUT”Message”; LINE SILLY.ANSWERS$

OUT — puts out an 8 bit integer value to an /O
port.
OUT <integer expression,integer exp-
ression) sends a low order byte of the
second expression to the output port
addressed by the low order byte of the
first expression.

RANDOMIZE — seeds the random number gener-
ator called by the RND function; the seeding
depends upon the operator’s response time to a
request from a previously executed INPUT state-
ment.

INPUT"Do you need to use a random

number”;A$

RANDOMIZE

READ # .. LINE — reads one record from the

selected file and assigns it to a string variable.
READ #2; LINE X$ — reads one record from
file no. 2 and places it in X$

SAVEMEM — reserves space for a file which will be
loaded when SAVEMEM is executed; normally, the
file will be a machine code type.

Functions

CONCHAR% — waits for and accepts one character
from the keyboard.

CONSTAT% — returns a -1 {true) if a key has been
pressed or 0 {false) if not.

INP — returns a byte from a selected /O port
INP{port.no.)

Compiler directives

There are six of these; two, %INCLUDE and
%CHAIN have already been covered and the rest
deal with the format of the listing produced by the
compiler. Directives do not interfere with the
running of the program and they must always be at
the beginning of the line.

%LIST and %NOLIST — turn the program listing on
or off which could be handy if you only want to see
part of a program: they affect both console and
printer listings and also operate on disk files.

%EJECT — as its name suggests, operates on the

printer when it is enabled and performs a control-L

function to start printing at the top of the next page.

%PAGE — sets up the number of printed lines per
page on the printer. It defaults to 64 and must be
altered if another page length is needed. Thus
PAGE(80) specifies 60 lines per page of print.’

Apart from compiler directives, there are six
“toggles” which may be included as required in the
command line. The toggles are preceded by a $
sign.

B — suppresses source file listing at the console,
but allows compilation statistics to appear.

C — suppresses the creation of an .INT file which
helps in initial error checking for a new
program since compilation is a lot faster.

D — suppresses the conversion of lower to upper
case letters when these are used in variable
names. ‘

E — a useful debugging facility which pinpoints
source lines in the .INT file in which an error
occurred. It must also be used if you wish to
employ the TRACE facility.

F — produces a listing of the program on the
printer as well as the console.

G — produces a listing on a disk file as well as the
console.

A typical CBASIC compilation command line would
be:
ADCBASIC TESTPROG first runm of the
revised version $EF
A typical CBASIC compilation command line would
be:
AYCBASIC TESTPROG first run of the
revised version $EF

ey oy

o gt

This compiles TESTPROG, lists it on the printer and
enables error checking to take place in the .INT file
and providing a message on the screen (the bit in
lower case, although it can be in upper case if you
want, or even omitted!).

TRACE is a useful facility which can be called upon
when a compiled CBASIC program is run using
CRUN. If TRACE is called without parameters, the
trace of execution of all lines in the program is
carried out but the extent of tracing may be altered
by including the line numbers as appropriate:

CRUN TESTPROG TRACE 1,10 - traces the
execution of lines 1 to 10

CRUN TESTPROG TRACE 9 - traces the
execution of all lines
after and including 9

CRUN TESTPROG TRACE - traces the lot!

Error messages

CBASIC produces (when appropriate) both COM-
PILER and RUN-TIME error messages which are self
explanatory. It also produces two-letter error codes
which are expanded upon in a closely printed 6 page
appendix in the User Guide — and if the E toggle is
employed at compilation time, a little more informa-
tion is produced including an indication of the
offending line and the probable position of the error
on that line. :

In spite of what the User Guide says, the simple error
messages are not immediately intelligible. When the
expanded error message is produced it says:

ERROR SE IN LINE 123 AT POSITION 14

OK, SE means syntax error, line 123 is the 123rd line
of the compiler listing, not statement label 123 and
position 14 means the 14th column on the screen or
printout. In fact, the error may have been caused by
something in a preceding line or by the omission of
something earlier on in the program {such as a
variable which has not been previously declared in a
DIM statement}). It might be on the line which is
indicated, or even its predecessor(s), particularly if
the \ feature is used to break up a line — MORAL —
don't use the \ feature unless you are confident, and
for the first few trial compilations, do use the F
toggle to get hard copy of your errors.

Conclusions

CBASIC is not really designed for the inefficient,
impulsive or non-structured programmer, but it has
some excellent features which render it very useful
for commercial or scientific applications. Until Micro-
soft dropped their absurd royalty claims on pub-
lished programs written in compiled MBASIC a
couple of years ago, it was the preferred BASIC
language used in commercial software and the CP/M
User Group library. Benchmark tests show that it is
somewhat slower in single precision arithmetic than

80 Bus News 17
compiled MBASIC (but it works to nearly double the
level of precision). It appears to be more accurate in
handling numbers with several significant figures,
but | have not tested this exhaustively yet; a future
article on benchmarks will deal with this aspect and
will include comparisons of both BASICs and some
other languages (including P*SC*L and F*RTR*N)
on 80-BUS machines. Although it is not available
from Gemini, several software houses will supply it
at round about £120 — about half the price of the
MBASIC interpreter. DRI’s CB-80 which has a true
compiler currently costs about £400.

Al things considered, CBASIC would be an excellent
choice in terms of cost and facilities for the user who
is updating from a cassette-based to a disk-based
system for serious applications. Before committing
oneself to its purchase, it would be worthwhile
getting hold of copies of EBASIC and ERUN to see
how the idea of a semi-compiled language appeals
to your style of programming. EBASIC is said to be
compatible with CBASIC but lacks some of the more
advanced features, so EBASIC programs should run
satisfactorily on your CBASIC system.

g Gemini

nascom

COMPIUITERS

e PANEILS
MONI TORS

>t DRILVES
PFPRINTER:SES

¥ SEPARES
DISKETTES

e PAFPER
SOFTWARE

¥ MANUAILS

¥ ¥ % % %

Please Send for Price List

A. DAVIES (LLANDAFF) LTD.
2d4-26 High Street, Llandaff

Cardiff CF5 2DZ. 0222 563760

6 Dayst: Jam-1ipm, 2-5.30pm

18 80 Bus News
A Brief Guide to MailMerge
by P.D.Coker

Many readers of 80-BUS News will have heard of or
used WordStar — one of a series of very useful
programs produced by Micropro. Apart from
WordStar, a sophisticated word-processing pack-
age, there is SpeliStar, a spelling check facility, and
MailMerge.

Both MailMerge and SpeliStar can only be access-
ed from within WordStar; the appropriate files
{MAILMERG.OVR and SPELSTAR.OVR} which are
supplied separately from WordStar, must be
available on the logged-in disk [Ed. — or the disk
specified in the WordStar patch area, normally A:].
The appropriate program is called up from the 'no
file’ WordStar menu. SpellStar has a comprehen-
sive range of facilities which are selectable from a
menu. Further information is provided in section 13
of the main WordStar manual. Mailmerge is also
well-documented — sections 9 — 12 of the same
manual deéals at length with all aspects of the
facility.

For most purposes, only a small proportion of the
documentation is needed but the relevant bits are
often difficult to locate; this article aims to provide
a simple guide to the more commonly used
features of MailMerge for the non-expert user.

Richard Beal {80-BUS News vol. 2 issue 3} has dealt
with the installation of WordStar on Gemini
machines with the IVC (and SVC), and the same
installation patches will work for the Map-80
Systems VFC.

MailMerge is, as its name suggests, mainly used
for creating and printing personalised letters (the
sort which Dave Hunt consigns to the rubbish bin,
unopened and unread!} for multiple mailings, but
it can also be used for creating letters or doc-
uments in which standard clauses feature regularly
- which would be useful in Solicitors offices, for
example. The ability to personalise a standard
letter would be useful for many small firms and
clubs, and just the job for aspiring authors to send
their manuscripts {printed by WordStar) to several
dozen publishers!

Both MailMerge and WordStar use ‘dot’ com-
mands for processing text. They take the form of a
full stop followed by two letters such as .pa which
inserts a page break into the document {similar to
Control L in CP/M or PEN). Some dot commands
are followed by a number or by text; many such
commands exist in WordStar and MailMerge but
normally, only a few are needed and when used,
they must occur at the beginning of a line. A few
dot commands are specific to either WordStar or
MailMerge but many are common to both.

WordStar operates in two modes — Document or
Non-document and the mode required is identified
by typing D or N in response to the initial display.
The Document mode is used for text work and has
automatic text justification among other features
while the Non-document mode is used for listings
and source code programs (and for setting up
MailMerge data and command files). For simple
mail list work, three files are needed — the
standard letter, a data file with names, addresses
and other information, and a command file
(optional but makes life easier). The command file
works in a similar fashion to a SUBMIT file in CP/M
and enables the use to control the progress of the
letter printing more effectively. It only contains dot
commands, unlike the letter file which contains dot
commands and text. ,

The following dot commands are most commonly
used in MailMerge: /
{The file names or variables enclosed in angle brackets
¢* and *>' must be supplied by the user.}

.av<variable> {Ask for Variable)

For most purposes, this will prompt for a
variable such as the date which may be
altered from one mailing to another, and
which would not normally be stored in a data
file. The text following the .av command must
match the field name in the letter file, and it
is automatically inserted into the letter during
each printing cycle.

.cs (Clear Screen)

Self explanatory — removes any previously
displayed material from the screen.

.df <file name) (Define data file name)

This indicates the name of the data file which
. will be used during the MailMerge operation.
ltis placed in the letter file.

.dm<message> (Display Message)

This is followed by appropriate text, which
will be displayed on the screen. It is normally
only used in a MailMerge command file.

fi<file name> (Define file name)

MaiiMerge needs to know what file is to be
merged with the data file: .fi is followed by
the name of the letter file and the command
is usually placed in acommand file.

.op {No page numbering}

WordStar defaults to numbering pages which

may be unnecessary — particularly for a
single page document. .op disables this
facility.

.pa (Page break/go to next record)

Avery useful command which instructs the
program to tnsert a page throw and go on to

use the next record inthe data file.

rv<listofvariable{s)> (Read a variable)}

This specifies what data fields are in the data

file, and their order.
The standard letter will have data fields inserted
into it and bracketed by ampersands (&); by
placing a /O at the end of a data field, one can
suppress the space which would be left by any field
such as a missing post code or county which may
have been omitted from the data file.

Three or four dot commands are required for all
fetters which will be processed by MailMerge.
These are .op {(optional), .df, followed by .rv and
.pa; the first three are placed at the beginning of
the letter file and .pa at the end. A typical letter file
would be as follows, where the dot commands
should always start in column 1.

.op
.4f silly.dta
.rv name,company,street. town county.

postcode, goods

123 High Road,
London E99 4YY.
&datak

&namek

kcompany /0&
kstreet&

&townk

koountyk &postcodek

Dear &namek

Would you kindly send me a copy of your
current catalogue of export model &goods&?

I would also be interested in receiving
details of discounts available for cash.

Yours faithfully,

A.N.Other

File this as BEGGING.LET.

Then set up a data file with the names. and
addresses of all the firms you wish to bother. Use
the NON-DOCUMENT mode of WordStar for this.
The data must be present in the same order as it is
required by the letter file and if any information
such as the name of the street, or the county is
missing, its place in the data file must be marked
with a comma. Each name and address must take
up one line of the file and is terminated with a

80 Bus News 19

carriage return — the record may be well over 200
characters long. The following example will show
how it is done:

Top Cat,Tiger Computers,Zoc Road,Panthertown,Lynx,
771 1ZZ,mice,pl86

Deputy Dawg,Newbone Computer Store, Wulf,

Avon,, floppy disks,pl86

Chris Tandoori,Beebac,,Oxbridge,, 0%89 BEC,

plastic computers,pl86

Store it as SILLY.DTA

Note that record 1 is complete, record 2 has no
street name, or postcode, hence the double
commas after Store and Avon, and record 3 has no
street name or county, hence two lots of double

commas. i

The command file comes next.

in Non-document mode type the following, noting
that the dot commands must start in column 1.

.cs
_dm Printing your letters

.av Date
. ['i BEGGING.LET
.dm Finished (Thank goodness!} - or

whatever you want {o say.

File this as DAFT.CMD

You now have three files, BEGGING.LET, SlL-
LY.DTA and DAFT.CMD — and you are ready to try
out the all singing, dancing and generally frolic-
some MAILMERGE!

Connect the printer, and select M from the
WordStar menu. The program will prompt you for
the name of the file to merge/print. In the example
given above, this is DAFT.CMD. You then have to
give some simple answers to profound questions
about the output. If you want to, you can save the
results of your labours in another file; MailMerge
prompts you for the name. Otherwise, the default
settings will be quite satisfactory for a trial run.
Don’t make the mistake of specifying more than 1
copy, since this means that MailMerge will go on
churning out as many sets of letters as you have
asked for copies!

Having established a reasonably simple format for
the use of MailMerge, | have found it quite easy to
use, although a minor bug sometimes manifests
itself. If one creates new data, letter or command
files using WordStar and then uses MailMerge
without exiting to the system, and re-entering
WordStar, the whole system may lock up, and has
to be reset.

20 80 Bus News

SHOCK HORROR HEADLINE
by David Hunt

In this set of DRH ramblings he looks at a utility
called LU, a deadly little program called VIRUS, the
new Gemini GM870 80-BUS MODEM board and its
software, the new UKM720 program, and Gemini’s
latest BIOS, version 3.2.

DH disk storage crisis

Having sat down to write this sessions’ pile of
disjointed bits, I'd done about a page’s worth and
for some reason decided to save it.

ERROR Destination disk full

Well perhaps it’s not a crisis, | didn’t lose anything
and l've plenty of secondhand disks knocking
about, but | had a look at the full disk anyway, sure
enough 784K with 4K free, and not a .BAK file in
sight. Oh well, start a new disk; format it and label
it.. The label, -80BUS4 ??? Did that mean I'd
completely filled three disks? It sure did! Almost
2.4M bytes worth, and that’s exclusively this mag
and its predecessors, and then only what l've
bothered to keep. Just as an exercise — a word
count; | put everything into one big library using
LU on the winnie, and then set SPELGARD the
problem of counting the words whilst | went for a
bite [Ed. — byte ?] to eat. Well of course,
SPELGARD gave up at 65000 odd words, not
surprising really, and | learned for the first time that
SPELGARD has a 16 bit word counter. Well by now
| really did want to know how many words had
been written, so | truncated an average file to
exactly 8K using a debugger and fed that to
SPELGARD, then multiplied the result by 295. The
result, | know you're all dying to know — just over
300,000 words. Was it really that much? Well a
re-count on another file came out about the same,
so | guess it must be something like that. Just as
well 80-BUS doesn’t pay me at a commercial word
rate, I'd be quite rich and 80-BUS woulid be broke.

I mentioned LU; well this program has been lurking
around the CP/M libraries for some while now, but
I only came across it a few months ago. It's
marvelous for archive stuff, you know, the sort of
thing you are loath to erase, but at the same time
don’t ever intend to look at again whilst begrudg-
ing the disk space it takes up. In fact your typical DH
80-BUS article. No in fact DH type articles are too
long and rambling to make much advantage of
stuffing them into a library, the only advantage
being in this case, keeping bits of things together.
t's much more useful at archiving lots of little
things, letters, dBASE .CMD files and the like.

As you know, CP/M allocates space to files in
blocks. In the good old days of single density 8”

disks with only about 240K of usable capacity, life

was easy. CP/M builds a map of where things are

put on the disk, it's part of the directory entry for

the file, and saved along with the name. That's

what file control blocks (FCBs) are ali about, but

then if you know about file control blocks, you

know about directory allocation blocks. Anyway,

the disk is carved up into nice small chunks, and

allocated an 8 bit number. Now there can only be

256 discrete 8 bit numbers, so the maximum '
number of blocks is 256. If the disk has a capacity

of 240K, 240 1K blocks can be allocated. But like

Topsy, disks growed, and double sided double

density 35 track disk formats came along. These

had a capacity of about 340K, and you can't have

340 1K blocks, so the block size was doubled, 170

2K blocks. Then someone increased the number of
tracks available by halving the track pitch, and 80
track disks appeared with a capacity of 788K. So

now we have 197 4K blocks. Yes | know I've dodged
the issue of single sided 80 track disks and the

‘double byte” block allocation numbers used in

winnies, but the fact remains that on the Gemini
high capacity disks systems, we have 197 4K
blocks. .

The snag, you ask? Well, it doesn’t matter if a
program is two bytes long, it’s still allocated 4K of
disk space, and so appears as a 4K file. More
typically, letters and dBASE .CMD files are usually
about 1K long, so 3K goes wasted. LU gets round
this rather neatly. It constructs one file called a
library file from a number of files, adding them end
to end, and then puts an internal directory into the
file. Yes, LU also has an internal block size, butit’s
only 128 bytes, so not much space ig lost.

Of course LU must have snags, the biggest is that
once a file is in the library you can’t execute it or
even look at it, it has to be extracted from the
library before you can do anything with it. Having
said it's for archive stuff anyway, this isn’t too
much of a limitation. More annoying perhaps is it's
quirky syntax, which is also rather unhelpful and
unforgiving.

Having said that you can’t do anything with a file in
the library without extracting it, LU came with a
couple of utilities, LDIR, so you quickly look at the
file names in the internal directory, and LRUN so
you can execute a xxx.COM file from within the
library. Unfortunately if a program is executed
from the library using LRUN, the program still can't
access any overlays it might want, they're still
buried in the library. The one utility that should
have been there but wasn’t was LTYPE, as much of
my library stuff is ASCII files. Still perhaps there
wasn't one or it had got lost or something. Or
worse still, someone out there thinks DH should
write one — no way!

I made a major mistake when | first got LU. | played
with it a bit and thought it would come in useful

later, so my first library file was made up of the bits
of LU, including the documentation. No | didn't
then erase LU from the system disk, it stayed there
until | wanted to use it, then the problem. The
documentation was in the library, and | couldn’t
remember the syntax to make it work. After about
half an hour trying all the tricks | could think of that
wouldn’t take too long, (including trying to load the
library into a debugger but it was too big) | resorted
to phoneing Richard who promptly reminded me
that all commands are prefixed with a *~. That
solved the problem and away | went.

The documentation for LU is ‘something else’. it's
32K long, and if you reckon | go on a bit, you should
try reading the LU documentation! | think the
command summary should take up about half a
page, after all there are only 9 simple commands.
And perhaps another page of warnings, tricks, etc.
That's about 4K at best. | can’t say I've read all the
guff that came with LU, so perhaps I've missed the
one vital command which gives you a list of
commands from inside the program, but | doubt if
there is one.

To give an idea of space saving with LU, take my
dBASE master disks, there’s five in all and tot up to
about 900K {allocated on 4K blocks). Squeeze all
that lot using SQ or SWEEP brings it down to about
700K. Then shove the squeezed file into a library,
the library ended up at about 330K. In fact | got the
whole of dBASE 2.41 and dBASE 2.43 on to the
same disk with room to spare. So the space saving
with LU was quite fantastic.

The other problem LU cures is getting things mixed
up. Lots of different suites of programs have a
program call INSTALL {or other similarly named
files). Try running the wrong install on a program,
and brother, have you got problems. Previously |
kept different suites of programs on different disk
user areas, but this still wasted space. With LU, all
the different parts of a suite of programs are all
~ tucked away in one file and can’t get lost or mixed

up.

VIRUS

Back to the wasted space at the end of a blockin a
CP/M directory, someone came up with a real lulu
of an evil idea. | don't know how far he went with
the idea, for all | know, it might be out there lurking,
but it should have been {or will be} a real block
buster if it's ever done.

The program was to be called VIRUS, and like a
virus, it was to be self propagating and infect the
world silently until the symptoms struck an
unsuspecting world computer population aimost at
once. The idea goes something like this:

VIRUS is introduced into an executable file by the
perpetrator of the crime, and that file is given to
someone else. The next time that program is

80 Bus News 21

executed, the program loads into the TPA as usual,
but before the program executes, VIRUS executes
first, because the start jump of the program has
been changed to VIRUS instead of the program.
VIRUS throws a random number and goes and gets
a directory entry from the unsuspecting persons
disk. VIRUS then checks four things, first that the
directory entry is a .COM file, secondly it has a start
jump {most CP/M programs have, and if it has
VIRUS saves it}, third, that there is space at the end
of the last block for VIRUS to lurk (could be difficult
that, but a clever programmer could probably crack
it}, and fourth, VIRUS is not already resident in that
space.

Given that all four conditions are satisfied, VIRUS
copies itself into the wasted space at the end of the
last block using the CP/M 2.2 random access
ability, changes the start jump to itself and changes
its exit jump to the jump at the start of the program
so the program will execute after VIRUS. One last
thing. In copying itself, it decrements an internal
counter by one.

Get the idea, VIRUS has now infected another
program. Next time either that program or the
previous program is executed, VIRUS will infect
another program and so on. The infection process
would only take a few tenths of a second, and the
user would be totally unaware of what was
happening. So the guy with infected disks gives a
copy of some program to another person, who aiso
catches VIRUS, who in turn passes it to someone
else. All the time the counters are decrementing.

When the counters get to zero, the program refuses
to run and up pops a message:

YOUR PROGRAM HAS VIRUS. SEND £5.00 to
P.0. BOX 1 BRIGHTON FOR DECONTAMINATION PROGRAM!

If the counters were set to a fairly large number,
and VIRUS were introduced into the right places,
like NASTUG and the Merseyside Users Group, the
natural process of swapping disks between folks
could go on for some considerable time before the
symptoms break. Exit our hero with a small fortune
and a lot of angry guys on his tail. Angry guys? Yes
probably, as VIRUS would have infected propriet-
ory programs as well as rip-offs. And as for chasing
him, well I'll be one jump ahead of the pack, ‘cos |
know whose idea it was in the first place. Nice
thought though.

The Gemini GM870 MODEM

They've arrived at last. The Gemini GM870 MOD-
EM cards that is. What a delight, both for me and
BT. Me because I'd been waiting for one for some
time, and BT because my usually frugal phene bill
has been taking a walloping.

So what do you get? An all ‘bells and whistles’
auto-dial, auto-answer MODEM all on one card

22 80 Bus News

with enough software to suit all but the most
fastidious user. The board is the usual high quality
8" x 8" card, with a fair sprinkling of big chips and
some miniature relays as well. This all comes with
the documentation, a lead fitted with the ‘new-type’
BT rectangular plugs to connect it to the phone and
a disk with enough ‘comms’ software to keep most
users quiet for a long time. In fact everything you
need to plug it in and go.

The Line Side

Close examination of the board reveals good
adherence to the BT ideas of line isolation using
both a line transformer (to the more rigid BT 5KV
spec.) for line coupling and an opto-isolator for
ringing detection. The whole area of the board
associated with the phone line part is ringed by a
heavy earth track, and a plate through M3 hole is
provided for the isolating earth. Tracking is
provided for spark gaps, but these are missing, the
manual emphasizing that the system is for
connection as a secondary device within the BT
‘new-type’ six pole plug and socket scheme. If the
MODEM is connected as a secondary, then it is
protected by the spark gaps in the primary socket,
but with proliferation of diy telephone wiring, there
is always the danger of someone doing a short cut
job and not using a primary socket for the phone
input. This danger is also present if the MODEM
were connected direct to the older type BT wiring
and the original phone removed. Three fuses are
provided, one each on the A and B pair, and a third
on the bell suppress line. I've never seen one there
before, but useful none-the-less.

Having said that the board appears to adhere to BT
specs. with regard to the line side of the board, why

the big red triangle saying 'Not approved for ...
etc.”?

Well here lies an interesting story, typical of the
muddle headed thinking which tends to go with big
bureaucracy. A few years ago, with the idea that BT
was to go public, HMG considered the business of
BT approval. BT could hardly carry out the
approvals itself as this could smack of monopoly,
and the only one allowed to run monopolies is
HMG. So the approval was farmed off to an
independent body, BABT, the British Approvals
Board for Telecommunications, along with draft
specs. from BT. It appears they also had a brief to
tighten the specs. a bit and were to be allowed to
charge for approval {expenses you know)}. So BABT
beavered away, and did what it was told and
tightened the specs.

Now what follows is hear-say, but sounds rather
likely. When BT heard what BABT had done, and
this was before BABT got hold of the approval
monopoly, BT hastily rushed through a few
projects of their own. Could this batch of approvals
have included the ‘new-type’ telephone socket, as

by no means would that socket get BABT approval
now. For starters, you can shove the British
Standard finger into it, and the ringing voltage is
150 volts!! Oh dear, oh dear. :

Another bit of spec. tightening involved the
situation of MODEM cards. They don’t actually
approve a card any more, they approve the card
and the system it will live in. So we have the very
odd situation where the Gemini GM870 meets the
spec., so the card will actually get (or by the time
you see this, maybe have got) approval; BUT, only
when fitted in a specified Gemini machine by
Gemini themselves. Under any other circum-
stances the card is not approved, and unless you
submit your own system, including the card, and
fork out quite a bit of loot, the card will never have
approval in your system. Even more wierd, if
Gemini made the card stand-alone, with its own
PSU and serial interface, and put the lot in a pretty_
box, then it would likely gain approval, despite the
fact that you might have the live side of the mains
connected to system ground! So stand-alone
MODEMs get approval. Built-in MODEM cards
don't.

So what's the point, why sell an unapproved
MODEM? None really, it's not illegal to sell them,
and it's up to the conscience of the purchaser who
buys and uses it. The red triangle notice only says
‘... action MAY be taken ... * and BT are fully aware
of the situation regarding the use of non-approved
phones in this country. If someone were mad
enough to try and make a stand on the matter, the
courts would be tied up from here to kingdom
come with petty flouting of BT regulations, and
no-one in authority likes to see the law made a fool
of, least of all BT. So provided the card does
everything it needs to to ensure it's safety, and
provided you have done everything to ensure that
your system is electrically safe, and provided the
MODEM doesn’t draw attention to itself by acting
in an unapproved fashion (which it won't}, then the
chances of being done for using it are vanishingly
small. Not that | would encourage anyone to flout
BT regulations, it's up to you.

To finish off the coupling arrangements the line
transformer is coupled to the AMD 7910 ‘World
Series’ MODEM chip via a terminating pad for
output, and via a 741 op-amp with carefully
controlled gain to reduce the input on V.21
aperation, thereby improving the integrity of the
signal. No in-line filtering is incorporated, as the
AMD 7910 includes its own line filtering, although
| have a sneeking suspicion that the inclusion of a
bandpass filter may improve the performance
under marginal conditions. That said, none of the
other MODEMSs in the same price bracket using the
AMD chip include bandpass filtering, nor the gain
control, so the performance should be at least as
good as the competition, and possibly better on
V.21 due to the gain controlled amplifier. The

transformer is sampled via a high impedance pad
and fed to an LM386, which is a smail audio
amplifier. An 8R speaker output is thus provided to
monitor the line. Useful if you keep dialing
engaged numbers or keep finding noisy lines. A
software on/off switch is provided for the audio
output, and the audio level is adjustabie from zero
to full volume using a preset pot. Maximum audio
output was not measured, but was certainly loud
enoughl!

The Computer Hardware

So on to the system side of the hardware, the bit
the computer side of the coupling transformer and
isolator. It's an 8” x 8” bus card like all the rest, and
the height of the coupling transformer and line
inductor are such that the card will fit in to a normal
Vero frame or the reduced pitch (0.95") Gemini
frame used in the Galaxy series computers. The
major interface devices are a CTC, a PIO and a
DART. The CTC and the PIO were familiar, the
DART was a new one on me, and unfortunately
little detail was provided about any of these
devices in the manual. Not a problem as we shall
see, but unusual, as Gemini manuals tend to go
into detail describing unfamiliar devices. The usual
O buffers were provided, handing the usual bus
signals and providing NASIO. More typical of
present technology, /O decoding was provided by
a PAL rather than discrete logic, with no options for
alternative addressing. The board uses 12 ports,
from 80h to 8bh, which overlaps the Belectra
Arithmetic card. This | understand is due to a
Gemini ‘internal communications failure’ as the
decoding was intended to be 84h to 8fh. Not that
it matters as the Belectra card may be re-addressed
and the dedicated software for the Belectra card
may also be re-addressed.

Three of the four counters of the CTC are used for
internal clock signals, two for the DART Rx and Tx
clocks, and one to control the dialling. The PIO
device does most of the card control, and all 16 bits
are used. Port A produces a 3 x 4 matrix which is
directed to the dialling decoded (effectively it
pretends it's a numeric key pad of a telephone).
Port B pulls in the relays as required and selects the
MODEM chip mode. The DART | don’t know a lot
about, except that it is a dual UART of some kind.
Only one side is used, the same register decode is
used for status in either direction and another port
for data either direction.

Dialling is quite sneaky, it uses a Mostek telephone
dialling chip, which is normally used with ‘“touch-
dialling’ phones. Give it a matrix of numbers and
it just gets on with it. Board tracking is included for
tone dialling to CCITT standards using a second
Mostek chip, but this chip and crystal are not
provided. This means the MODEM may be
~ equipped for use with UK tone dialling PABX

80 Bus News 23

switch boards as well as the normal direct line
connect.

The guts of the matter revolves around the
MODEM chip, | haven’t got the full words for this
device {l borrowed and read the words some time
ago) and information in the MODEM manual is
sparse (like the CTC, PIO and DART). This chip is
the all laughing dancing singing thingy capable of
CCITT and BELL protocols. This is all controlied by
five address lines, the first two being connected to
the PIO, the remainder being returned to patch
plugs which are sealed with paint. Now the words
say that if you remove and change the links, the
card will be forced to work outside BT regulations,
which translated means it will start working in the
BELL mode. What the manual does not say is what
exactly happens when you do swop the plugs
about. So for that you need the AMD manual.
What's on offer with the standard setup as
supplied:

V.21 300/300 originate full duplex
V.21 300/300 answer full duplex
V.23 75/1200 originate asymmetrical duplex
V.23 1200/75 answer asymmetrical duplex

This is standard for most things found in the UK,
and the likelihood of BELL protocols being en-
countered is remote.

On test a strange anomoly has been observed
which must be something to do with the hardware.
I wonder if it has occurred elsewhere? | haven't
looked into it yet, but it goes as follows:

Conditions:
Computer mains off but not unplugged from
mains
MODEM connected to line (plug in socket}
Video recorder on play back in another room
Incoming call, phone ringing

Symptoms:
Ringing ‘burr’ heard quite loudly from the TV
set when an incoming call occurs??? Now, as
I say | haven't looked for it, | just unplug the
MODEM when not in use, but | haven't the
foggiest idea what causes itl!

The Manual

A pretty comprehensive manual is supplied which
runs to 52 pages, and covers all the major aspects
of the card and its software. Details are missing
about the VO devices used, referring you to the
respective device manuals. Instead of blow by blow
accounts of the devices used, source listings of the
setup and l/O procedures are provided. As can be
imagined, with a PIO, a CTC and DART to set up,
the routines are complicated and tedious. With the
source listings provided, they can all be seen and
analysed. These are much more useful than
accounts of the workings of the chips. The

24 80 Bus News

hardware description is short but with enough
detail to allow the user to cope. The majority of the
manual very adequately covers the software
provided. One day Gemini will get round to
employing someone who can wield a drawing pen,
as once again, any illustrations in the manual have
been composed using the printer and look tatty.

The software .

There are three parts to the software. A demo with
its source file for auto-answering, not very useful,
but invaluable for those few who will go on to write
proper answering software. The two main parts are
GEMTERM a ‘comms’ program written for the card,
and a suite of programs modified around Richard
Beal’s DIAL program.

GEMTERM is a complete entity, being a terminal
emulator with the ability to send and receive ASCH
{not binary) files. All parameters needed by the
MODEM and program can be set manually or from
a library of parameters, items such as baud rate,
the mode, the number to ring {if any), whether the
loudspeaker should be on or off, the number of
data bits to be used and the parity (if any). The first
entry in a line of library data is a name, so
GEMTERM can enter and dial the service required
direct with no intervention by the user. Other
parameters available from the command menu
include memory save of incoming data, XON/XOFF
protocol select, printer echo, number of nulls to use
after line feed, disconnect line, and many others.
This is stand-alone software dedicated to the
GM870 and it makes good use of all the features of
the card, particularly the ability to select a service,
set up the MODEM, dial the service and then let you
get on with it. It works well, but being new and
unfamiliar to me | had a problem remembering the
commands at first. | particularly liked the library
facility which saves all the hassle of remembering
the MODEM parameters for a particular service and
the telephone number. The snags, it can't handle
the 1200/75 PRESTEL service properly or the
Viewdata compatible bulletin boards {these require
interpretation of graphics symbols}, and it will only
send or receive ASCII files.

DIAL has been mentioned before. A similar idea to
GEMTERM as far as the library goes, but otherwise,
completely different. What DIAL does is to fetch an
appropriate ‘comms’ program for the service
required, set up the MODEM for that service, dial
the number and wait for reply, and then jump
straight into the ‘comms’ program. On exit, DIAL
disconnects the line. DIAL may be patched for a
number of different MODEMSs, not only the GM870
and may be purchased as a separate entity if
required.

DIAL always expects a second command param-
eter, if you don't give one, it will prompt for one, so
the command:

>DIAL TARGET

would execute DIAL which goes to the library,
looks up TARGET, then fetches UKM?7, the approp-
riate ‘comms’ software, gets the MODEM param-
eters and sets them, dials the number, waits for a
reply, and when a reply is received, jumps into
UKM7. There are no terminal controls from DIAL
itself, UKM7 is the terminal program and that does
the business. This means the DIAL can be used
with appropriate software for the service to be
called, and two ‘comms’ programs are provided.
Snags? None encountered but would be nice if it
sent service ID's instead of leaving this to the
‘comms’ program. But that perhaps would com-
plicate matters somewhat. Another thought for
DIAL would be an internal password, as it's so easy
to use, | caught my kids trying to raise the Titanic
at 2p a frame on PRESTEL.

UKM?7 is a public domain program and is a UK
version of the original all bells and whistles
American MODEM7. MODEM7 was very system
dependent, and not really appropriate to UK use so
David Back put it through a mincer and came up
with UKM7, a version entirely suited to UK use.
Richard Beal has removed the UART initialisation
routines as the initialisation is carried out by DIAL,
although the full source and documentation is
supplied so UKM7 could be put back to its original
state with no difficulty. This is a very powerful
program, not only a terminal emulator, but it
incorporates down load and up load of files {singly
or in batches) in ASCH or binary mode, using both
old and new versions of XMODEM binary self
checking protocol. It also has the ability to trap all
/O and keep this on a separate file, so that
mistakes or stuff arriving too fast to be read at the
time can be analysed later. Ali clever stuff, and
improving all the time (see below). Snags? Touchy
about syntax and also seems to get it's knickers in
a twist when up-loading and down-loading in the
wrong mode. it you're going to use this one, take
David Back’s name out of the sign-on before use.
(The manual doesn’t mention this.}

The last program supplied is TERMB, a little
terminal emulator with buffered /O written up in
80BUS some time ago. Very fast and simple. Dead
easy to use with no vices.

Not supplied on the disk is PRETZELZ, Dave Ryder’s
PRESTEL terminal emulation program available
from Henry's. The new version 3.0 is fully compat-
ible with DIAL and may be directly used with the
GM870. Works well.

In use

Couldn’t be simpler, | plugged it straight in and it all
worked. Well | haven't yet tried the auto-answer
program. People tend to phone me, not the
computer. Other than that, what can | say, it all
worked!! All the software works and GEMTERM
and DIAL libraries are easily set up. PRETZEL2
worked, but two versions were required for use

with DIAL, one for PRESTEL itself with the 14
character ID, and one without the ID for other
Viewdata services. (I don’t want to give other
people my sign-on and passwords.) Never mind,
what's on offer is one of the most effective and
complete ‘comms’ packages I've seen for any
machine.

UKM720

Always on the lookout for something new, and
browsing through the down-load section of the
CBBS London West Bulletin Board, | happened
across a revised version of UKM7 calt UKM720.
Again written by David Back, this one is two
generations younger than UKM7, and is put
together rather differently.

Instead of one huge source file, UKM720 has an
uninitialised .COM file, and an installation program
for a number of computers ranging from Gemini
GM811/813 cards through Tandy TRS80 to Epson
portables. The source file of the installation data
file is also provided so you can add routines for any
that aren’t in the list, and of course the GM870 is
too new for the list. Actually, there’s a small
problem here, the install program offers only 10
options, one of which is Gemini. If you want to
install something else, then you must delete one
from the installation data source and substitute the
new. | didn't want to do this, as everything there
was useful to someone, and anyway, it looks
greedy to have two Gemini options. | opted to
make the two Gemini options conditional, enclosed
in an 'IF - ELSE’ assembler directive, and you
reassemble for either option. The modified source
for the GM870 bit is published here, but remember,
if you do down load this from CBBSLW, then the
source will also require an equate somewhere to
indicate which MODEM source to assemble. Sorry
about the 8080 mnemonics, | did shove the thing
through TRANSLAT to convert it to Z80, but it
~ wouldn’t assemble, so rather than spend half an

evening mucking about to find out why, | simply
added my bit in 8080 mnemonics.

This proves the advantage of having the sources in
the GM870 manual, as it was a straight copy job to
include it. The bit tests are done differently to the
manual, but there were 10 other examples in the
source showing how to do it, so no problems.

Since then I've had trouble with a couple of the
more local bulletin boards which are supposed to

" auto select 1200/75 or 300 baud, they just don't
seem to work. My first suspicion was the software,
but that was exonerated by trying different soft-
ware, which pointed to the MODEM card, but as
similar resuits happen with a WS2000 MODEM, |
guess the bulletin boards are at fault. DISTEL does
say (at 300 baud) that the auto select is experi-

80 Bus News 25

mental, so there you go! [Ed. — | have used the
Gemini GM870 MODEM on an ‘auto-select’ bulletin
board, and am pleased to say that it worked at
either rate. Unfortunately | can’t remember which
board!]

Enough for this session about MODEMs, they're
fun but tough on the pocket. Unlike yacking on the
phone, you don't tend to be aware that the minutes
are ticking away. Now there’s another idea,
reprogram the Gemini SVC/IVC to tick away in
money rather than minutes at the top of the screen,
it could pick up the charges for the phone call from
DIAL. That would show just how bad on the pocket
it really is.

Another New Goodie — Gemini BIOS V3.2

Another new goodie has appeared from Gemini,
and not too tough on the wallet, all things
considered. BIOS 3.2. Those who remember SYS
will remember one of its features was the ability to
run with a selection of drives. You know, Gemini
DDDS on drive A and RML on drive B. Or,
substituting Teac TD55-F {double sided 80 track) for
the standard Gemini arrangement of the time of
Micropolis 1015-V (single sided 80 track) drives. A
lot of SYS'es saw use for just this purpose, limited
though the feature was. BIOS 3.2, which is only
eighteen months late, supercedes and exceeds
SYS for this purpose.

Over a period of time, Gemini have gone through
four disk formats, GEMSDSS, GEMDDDS, GEM-
QDSS and GEMQDDS; at the same time less
significant features of the BIOSes has been
improved, changed, added or just done away with.
One such improvement is again associated with
drives. Early Gemini BIOSes know nothing about
RAM-disks, later versions you hand patch to turn
them on, and the latest finds out for itself what's
there and turns it on for you. Likewise, if you
upgrade your drives, to a different format, the BIOS
has to be changed to suit. Gemini would always do
this for you, but the number of permutations is
getting out of hand. All arguments for a different
way of doing things, hence BIOS 3.2

BIOS 3.2 consists of a full feature BIOS, (one or
more of several versions being supplied depending
on your current CP/M or system, one called
BIOSF.SYS (for the floppy drive only version), a
BIOSFW.SYS {for a floppy as the boot drive plus
Winchester drivers, BIOSW.SYS {for the winnie and
floppy version), and BIOSN.SYS for MultiNet
systems), a system configuration file, a serialized
CP/M core with the Gemini version of CCPZ, and a
CP/M constructor called GENSYS. The system

26 80 Bus News

configuration file is edited with a text editor to suit
the drive configuration required, and the whole lot
put together with GENSYS which goes to the BIOS
file and pulls out the bits it wants. GENSYS then
gives you the option of putting the results onto a
system track or saving it as a file for use with
SYSGEN later. The attraction from Gemini’s point
of view is that when significant changes have been
made to the BIOS or new permutations of drive and
format take effect, all they have to do is issue new
versions of BIOSx.SYS and everyone can reap the
benefit without all the hassle of having to send
disks back to Gemini for upgrade.

So what does BIOS 3.2 offer? Apart from all the
drive permutation twiddles, basically all the normal
Gemini features, screen editing, screen dump, etc.
Also the usual /O byte support for serial and
parallel printers, serial transmission protocols and
all the rest. Nothing radically new, just the latest
versions with extensions to the patch area so that
all three different IVC/SVC cursor types may be
defined, and screen edit mode may now be
disabled.

The fun really starts around the drives. If BIOSFW
or BIOSW for winnies is included, then the winnie
can be partitioned as required, for instance you
could make five 1M drives out of 5M winnie (I can’t
think why you should want to, but you can) or,
more usefully, for example an 8M and a 2M out of
a 10M winnie (8M being the maximum CP/M 2.2
can address).

The permutations of drives can be fun, one
problem with SYS was that you couldn’t easily mix
drive types beyond 5” 48 tpi with 8”, or 5” 96 tpi
with 8”. So mixtures of 48 tpi and 96 tpi were out
as you couldn’t make SYS double step 96 tpi drives
to read 48 tpi formats. With BIOS 3.2 you can. The
menu is impressive for home use, yet not powerful
enough to make any competition to Gemini’s own
MFB series of machines. All the past and present
Gemini formats are supported, naturally, that's
both 96 and 48 tpi double density and the original
double sided single sided GM805 format. Addition-
ally, Superbrain 48 tpi single sided, IBM PC 48 tpi
single and double sided 8 sector formats, DEC
Rainbow, both Nascom formats and dear old
fashioned 8” single sided single density. What's
more you can assign more than one logical drive
assignment to one physical drive. So for a person
like me who gets a lot of disks in various Gemini
formats, the following works a treat.

Gemini 5M winnie

Gemini QDDS Physical drive 0
Gemini QDDS Physical drive 1
Gemini DDDS Physical drive 1
Gemini SDDS Physical drive 1

Logical Drive
Logical Drive
Logical Drive
Logical Drive
Logical Drive

=G ow e

By sticking disks in either drive 0 or drive 1 as
appropriate, | can copy anything that comes my

way to either the other drive or the winnie.
Similarly, if people expect things returned, | can
copy stuff back to their original disks with no
problem. The only problem comes when formatt-
ing disks, BIOS 3.2 does not supply a format
program which will pick up the disk dph's and
format to the standard in current use by the drive.
Pity that, I'd have loved to have sent this disk to
Paul in say DEC Rainbow format and then see how
long it would take him to sus what I'd done. Never
mind, I'll invent a wierd format of my own using
ALLDISC, that should fox him completely and give
Gemini’s new MFB2 something to get upset over.

BIOS 3.2 is even more intelligent than it already
appears. Lets take an instance where you are using
a 96 tpi machine to construct a system track for a
48 tpi machine. It wouldn’t be a lot of good if the
result sent to disk was 96 tpi, as the 48 tpi drives
couldn’t read it. No if the BIOS constructed is a 48
tpi BIOS, then GENSYS will write the result to
either a 48 tpi drive or double step (still equalling 48
tpi) to a 96 tpi drive, the boot sector being correctly
set up for the 48 tpi format. This brings me to the
second big feature of BIOS 3.2. Each physical drive
can be specified separately. One drive could be an
8" for instance, another, a double sided 96 tpi with
3ms head stepping and no head load delays,
another, a 96 tpi single sided with 20mS head
stepping and 50mS head load delay and spectac-
ularly long head settle times, whilst yet another
drive could be a double sided 48 tpi drive with
10mS head stepping and no head delays. A
maximum of four physical drive may be specified
by type 8" or 57, the number of tracks per.inch, the
number of tracks. the number of sides, the step,
head settle and load times.

BIOS 3.2 expects you to be logical about your
logical to physical drive assignments, it no good
specifying 96 tpi formats to a 48 tpi drive for
instance, on the other hand it a 48 tpi format is
specified to a 96 tpi drive, then the drive is forced
to double step to read and write like a 48 tpi.

Reading 48 tpi disks with a 96 tpi drive works well,
writing needs care, as the disk should be wiped
clean with a magnet and reformatted using the 96
tpi drive before data is written, using the 96 tpi
drive {hence the need for the format program). This
is because the heads of a 48 tpi drive are wider than
those of a 96 tpi drive and therefore track a wider
area. If a disk previously written using a 48 tpi drive
is rewritten using a 96 tpi drive, there will be areas
of the original 48 tpi recording left between the
tracks recorded by the double stepping 96 tpi drive.
When the disk is placed in the 48 tpi drive, the head
will track both the intended track recorded by the
96 tpi drive, and also the residual crud left from the
original 48 tpi recording. This will degrade the
signal to noise ratio, often to the degree that the
disk can not be read.

org 500h
.phase 100h

skkkkkkhokkkdkkkkk GEMINI OVERLAY 3223223232820t s st
if GM811

+

. k%% Gemini GM811/813 overlay

3

; THE GEMINI SOURCE &S IS

. k%% End of Gemini GM811/813 overlay ¥%%

’

else

; k%% Gemini GM870 Overlay %i*

3

; For ready initialised DART using DIAL type program.

B

80 Bus News

jmp 300h ; Absolute start of program
modctlp set 085h . Modem control port for send
moddatp set 084h . Modem data port for send
modcrev set modetlp . Modem control port for receive
moddrev set moddatip . Modem data port for receive
msndb set 4 ; Modem send bit (xmit buffer empty)
msndr set 4 ; Modem send ready
mroevb set 1 . Modem receive bit (rx buffer ready)
mrove set 1 ; Modem receive ready
It is important not to alter the addresses of labels below
fastelk: db true . 4 MHz or greater processor speed
bakupbyte: db false ;. true=make .BAK file
xprilg: db true . true=menu initially off
twidth: db 79 . Max. terminal columns
saveflg: db false . true=terminal filesave initially on
echoflg: db false . true=terminal echo initially om
initflg: db true . true=modem port already initialised
ansbak: db true . true=answerback on 'E
inmodclp: in modctlp ; Get send port status
ret
increv: in modcerev : Get receive port status
ret
outmoddatp: ont moddatp ; Send data
: ret
anisnd: ani msndb . Bit to test for send ready
ret
cpisnd: cpi msndr : Value of send bit when ready
ret
~inmoddatp: in moddrev . Get received data
ret
anirev: ani mrevb . Bit to test for receive ready
ret
cpirev: cpi mrovr . Value of receive bit when ready
ret
logmssg: db 'Dave ;Hunt',cr,1f.0
.dephase
org 550h 7
.phase 150h : Do not alter this org
initmod: jmp geminit
blid: db 2 . Overlay identity
slo: jmp gmsetlo
shi: jmp gnsethi
txwait: jmp gntxw
hexprti: jmp 0 ; UKM7 fills in address
geminit: ret
; Dynamic split baud sets
gmsetlo: ret
gmsethi: ret
gmixw: ret

s

endif

*%% End of Gemini GM870 overlay **%

sdkkkdkhkdk END OF GEMINI OVERLAY ddksdakkdkkhk
.dephase

27

28 80 Bus News

An optional facility for use with BIOS 3.2 is a utility
called IBMCOPY. Now this program allows a
system that can cope with 48 tpi, 40 track single or
double sided disks to initialise, read and write, IBM
PC 8 sector or 9 sector, single or double sided,
PCDOS disks. This will be of great use to people
who have a PCDOS machine at work, and a Gemini
at home, as they will be able to transfer data to and
from those different machines, or even to Super-
brain or DEC! Remember though that the PCDOS
programs themselves will be of little use, unless
you have a Gemini GM888 board and have
implemented PCDOS on that.

BIOS 3.2 has been supplied with standard Gemini
CP/M’s from about June this year. Owners of
earlier CP/M’s can get theirs upgraded by returning
their original Gemini master disk to their dealer
who will return it to Gemini for upgrade. Cost
£30.00 plus VAT.

Well, that just about wraps it up for this time, back
to the beginning, this is another 6500 words on the
total assuming no-one goes mad with a blue pencil.
Let me think, at fourpence a word, thats ...

BacklIssues

Please note that back issues of all
80-BUS News magazines are still

available, except for Volume 2
Issue 6.

In order to reduce our stocks any

issue from Volumes 1, 2 or 3 may be

purchased for £1 each. Volume 4
issues are available at £1.50 each.

Postage must be added to these
prices. Allow 30p per issue UK,
50p per issue overseas.

Business Computer Developments
D The Saddlery
0 O 113 Station Road
D Chingford
E47BU Phone 01-524 2537
COMPREHENSIVE PRODUCT RANGE, INDEPENDENT SERVICE AND COMPETITIVE PRICES
WORD PROCESSING & TEXT EDITING PROGRAMMING LANGUAGES
MicroPro ADA
WORDMASTER 70 Watch this space
WORDSTAR 200 ASSEMBLERS
WORDSTAR PROFESSIONAL 299 Digital Rlesearch 145
Microsolt MACRO 80 165
PLANNING & DATA MANAGEMENT BASIC
Digital Research comp 325
Ashton-Tate interpreter a5
dBASE 11 (2.43) 250 Microsoft compiler 325
Microsoft interpreter 300
MULTIPLAN 145 Xitan XBASIC interpreter 185
SorcimUS [
SUPERCALCH 175 Digital Research 275
Abtex Ecosoft ECO-C (needs M8O) 165
PERTMASTER 590 ECO-C plus M80 299
ECO-C + MB0 + K&R 315
STATISTICS COBOL
Microfocus CIS COBOL 325
Ecosoft CIS + FORMS2 + ANIM 585
MICROSTAT (4.1) 275 LEVEL 735
SOURCEWRITER 625
Microsoft 475
TRAINING SOFTWARE CORAL
British Telecom 950
MicroCal HANDS-ON FORTRAN
BASIC 150 Digital Research 395
cPM 80 Microsoft 385
COBOL 330 Prospero PRO-FORTRAN 195
dBASEH 80 PASCAL
MULTIPLAN 80 Digital Research MT+ 250
MAC Microsoft 250
WP Workshops 75 Prospero PRO-PASCAL 195
UK Saies post free but add 15% VAT Access & Visa welcome
Please state which disk format you require and make chegues payable to ‘BCD’
All popular operating systems supported — CP/M CP/M-86 MS-DOS PC-DOS UNIX
DEALER/CONSULTANT/ QUANTITY AND EDUCATIONAL DISCOUNTS AVAILABLE
Product and operaling systems referred to are trademarks or registered of the companies of origin

e

80 Bus News; 29

Random Rumours (and Truths?) by S. Monger

So, 80-BUS News is soon to cease? For those to whom this is news, let me
just set the scenario. With the last issue of 80-BUS News, subscribers to
this wonderful rag were sent a letter from our Editor, saying that once volume
4 was completed (this issue plus 2 more) there would be no more 80-BUS News.
Oh woe, oh woe! Does this mean there will be a "Son of 80-BUS"? Well, our
Ed. did go on to say that those that remained subscribers to the bitter end
would receive FREE, GRATIS and FOR NOTHING a regular (since when has anything
to do with 80-BUS been regular?) newsletter from Gemini. Well, as I”m sure
that such an esteemed publication will have nothing to do with the likes of
me, I thought that I had better write what looks like being my pen—penultimate
rambling. And as you haven’t heard from me since Volume 3 Issue 3 I know how
incredibly thrilled that this must make you.

So what has happened since I last penned a masterpiece? [Ed. - an awful
lot, as I can’t remember ever receiving a masterpiece from you!] Well, let’s
quickly go through the 80-BUS/Nasbus manufacturers. Lucas - no sounds at all.
Apparently the Nascom 2 still continues, unmodified from the original 8 year
old design, and is largely used within the Lucas organisation. IO Research -
- Pluto 2 seems to be going very well, and at £2500 a time I"m sure that 10 are

going very well also, thank you. Belectra, Cotsgold, EV Computing, MAPBO,
Maas Computer Consultants - their products continue to be available.
Microcode - 1 understand their products are now discontinued. Newburn - four
new boards available from this new company to the 80-BUS manufacturing scene;
A/D, D/A, multi-input, and multi-output boards. Also two new I/0 boards soon
from MRFS Ltd. Further details on these six boards when I have them.

And what about Gemini. Good news - GM802 RAM, GM813 CPU/RAM, GM832 SVC,
and various systems are down in price. Also, glancing through their most
recent MultiBoard catalogue {(No.5 - the colour one) I note the following
changes. The GM863-32 32K battery-backed static RAM board, GM863-64 64K bb s—
RAM board, GM853 EPROM board, and GM870 auto-dial auto—answer V21/V23 MODEM,
all marked as "in design” have now all been ian production for some time. The
GM851 12~bit A/D board, similarly marked, is just entering production. There
is no sign yet of the GM855 tape streamer that is mentioned, and the GM723
ultra high capacity floppy drive has never appeared as the manufacturer went

_bankrupt! However, there is no mention of the GM842 D/A daughter board for the
" GM816, but this should be "available soon'. Finally, the GM829 FDC/SASI board
has been replaced by the GM849 FDC/SCSI board; the main reason for this change
being the decreasing availability of the FDC chip set that was used on GM829.

On the Gemini system frount: 20 Mbyte Winchesters have been available for
some time — as a stand-alone system (GM924), as a MultiNet Fileserver (GM927),
and as an add—on sub-system (GM835-20). Certain systems are now being shipped
with 1/2 height drives. MultiNet 2 is available on all new network systems,
or as an upgrade, and gives many worthwhile improvements. M-F-B 2 (the system
for reading and writing disks of many different system types) has also been
-available for some time, and is currently being shipped with a library of
formats rapidly approaching the 500 mark!

And finally, even though it is unrelated to 80-BUS, I just have room to
make mention of the bomb-shell dropped by Gemini recently., In a word, "68K-
BUS". Although Gemini have no intention of stopping development of 80-BUS
products (as I'm sure the above must illustrate) they decided that they must
also have a "proper" 16/32 bit range. They have therefore been beavering away
quietly behind the scenes and have launched a range of 68000 based system and
board products, and a new bus -~ 68K-BUS. Good luck to Gemini with this range
(grovel, grovel), and can I write for 68K-BUS News please ?77!!

30 80 Bus News

EVER WISHED FOR A VERSATILE, FRIENDLY DATABASE PROGRAM
THAT DIDN'T COST AN ARM AND A LEB
AND DIDN®T REQUIRE YOU TO LERRN A NEW LANGUARGE?
ATLAST we have it!
ATLAST gives you all the field types you ever wished for.
ATLAST is fully menu-driven -- no commands to remember.
ATLAST updates all keys on the fly -- no lengthy sorting and indexing.
ATLAST enables you to design your own forms with its own word-processor.
ATLAST is fully Turbo compatible if you wish to add your own Pascal
enhancenents.

ATLAST -- only 299 + &1 P&P.

OTHER NASCOM/GEMINI/80~BUS SOFTWARE
Price pep

CP/M-80:
AllDisc (Read/Write most other formats) £150 £1
Turbo Pascal 3.0 .eveerecresesscnsssnsssssconasncsanns £ 35 £17
“Turbo Toolkit (B-tree ISAM file management) £ 35 £1
TULDO TULOY cvvvnssnsnsessnsossosasnsnassnarcnsnssassses £ 34 £1
REAAUCSD oo v erercunnncannsnnsseassvosssssnnnssanesens £ 29 £1

HUGE PRICE REDUCTION ON UCSD P-SYSTEM
UCSD Development System (IV.13)! including filer, editor,

development tools and 1 compiler (Pascal, FORTRAN, BASIC)
This premiere system offers dynamic segmentation (overlays)

and separate compilation to libraries cessnsnsees E195 £2
{Nascom requires AllBoot EPRUMcccvcrnanveccnnsan £ 2%
Extra COMPLIGY ..seseceesssssssessssscscssconnnansesns £ 95 £1
Advanced Development Tool Kit (Native Code Generator,

a5 £1

280 Assembler, Linker & Analysis Tools? crcessns £
AllDisc enhancement (p-aystem only) ..cevscvsvacascnes £ 75 £1
Piuto Graphics LIDXEry ..eseescencnrcecssvnnnsonsonses £
ROAACEM v v evonssssasnosscevessnsnacansasensanasnnsesnses E

D18SC TRANSFERS

Alnost any CP/M or UCSD diac tranaferred to your
format. (Enguire if uncertain)sscevecrrsannnscss £
Di8C8: S5.25", B™ tuivrveesasssssosnsosssesnonsnssns PRI 4

3", 3.5 £
K . T)
L]

w0

£1

W

.50

Complete systems (hardwsre and software) supplied to order.
» Frae AllDisc on any complete CP/M or UCSD computers

VAT at 15% to be added to all prices. Please send cash with order
and full details of the hardware you are running on to:

Mike York Microcomputer Services
9 Rosehill Road, LONDON SWI8 2NY. Tel 01-874 &244.

QUANTUM
COMPUTER

Springfield Road Chesham Bucks HPS 1PU
/ Telephone (0494) 771987 Telex 837788

TURBO PASCAL V3

Overlay system

Program chaining with common variables
Random access data files

Structured constants

Type conversion functions

Wordstar type editor

Twice as fast as TURBO V2

One step compile

Installed for Gemini IVC/SVC

Absolute address variables

Bit/byte manipulation

Direct access to CPU memory & data ports

Dynamic strings

Free ordering of sections within declaration part
Full support of CP/M facilites

In~line machine code generation

Include files

Logical Operations on integers

* N RN % N N R W
L N N N O

WHAT THE CRITICS SAY

PC MAGAZINE "Language deal of the century...TURBO PASCAL. It introduces a new programming
enviroment and runs like magic."

POPULAR COMPUTING "Most Pascal -compilers barely fit on a disk, but TURBO PASCAL packs an Editor,
Compiler, Linker, and Run time library into just 29k Bytes of RAM,"

BYTE "What I think the computer industry is headed for: Well documented, standard,
plenty of good features, & a reasonable price."

TURBO PASCAL IS AVAILIABLE NOW TURBO PASCAL V.3 CP/M 80 69.95
GIVE YOUR SYSTEM A TURBO BOOST " " " CP/M 86 102.95
TURBO 8087 version CP/M 86 109.95

TURBO TOOLBOX

Designed to compliment the power and speed of Turbo Pascal, TURBO TOOLBOX consists of three
modules created to save you from "rewriting the wheel" syndrome.

TURBOISAM Files using B+ Trees

Makes it possible to access records in a file using keys (e.g. "Smith" or "Rear Bumper") instead
of just a number. Even thoigh you have direct access to individual records in the file you also
have easy access to the records in a sorted sequence. A must if you plan to work with direct
access files. Source code is included in the manual.

QUICKSORT ON DISK .
The fastest way to sort your arrays. Preferred by knowledgeable programmers. Available for you

now with commeunted source code,

GINST (General Installation Program)
Now...the programs you write with Turbo Pascal can have a terminal installation mode just like
Turbo”s!, Saves hours of work and research, and adds tremendous value to everything you write,

TURBO TOOLBOX 54.95
TURBO TUTOR

Don"t know Pascal?.... let Turbo Tutor teach you. Supplied as a disk of demonstration programs
and a very informative and entertaining manual this package will show you how to use your Turbo

Pascal to best advantage.
TURBO TUTOR 34.95

All disks supplied in Gemini QD-96tpi format as standard, please state your format if different.
All Prices are exclusive of Vat (15%) and Carriage & Packing 1.50. Personal Callers by
appointment Only.

