BUS NEWS

80

SPRING 1985

VOL. 4. ISSUE 1

)
oc
o
-
o0
=
LL]
Q
-
=
¥
=
0
o
00
o
™~
00
=
&




-
SPRING 1985 BUS nE ws Volume 4. Issue 1.

CONTENTS
Letters to the Editor 3
The DH Bits 7
Private Advertisement 14,18, 21
Conditional SUBMIT Files 20
Prestel Update 26
Things your Mother never told you about M80 and L80 27
Converting Wordstar Text Files to improve their readability 29

All material copyright © 1984/1985 by Gemini Microcomputers Ltd. No part of this issue may be reproduced in any form
without the prior consent in writing of the publisher except short excerpt quoted for the purposes of review and duly credited.
The publishers do not necessarily agree with the views expressed by contributors, and assume no responsibility for errors in
reproduction or interpretation in the subject matter of this magazine or from any results arising therefrom. The Editor
welcomes articles and listings submitted for publication. Material is accepted on an all rights basis unless otherwise agreed.
Published by Gemini Microcomputers Ltd. Printed by The Print Centre, Chesham.

SUBSCRIPTIONS
Annual Rates UK £9 Rest of World Surface £12
Europe £12 Rest of World Air Mail £20

Subscriptions to ‘Subscriptions’ at the address below.

EDITORIAL
Editor : Paul Greenhalgh Associate Editor : David Hunt

Material for consideration to ‘The Editor’ at the address below.

ADVERTISING
Rates on application to ‘The Advertising Manager’ at the address below.

PRIVATE SALES
Free of charge to Subscribers by sending to the address below.

ADDRESS: 80-BUS News,
¢/o Gemini Microcomputers Ltd.,
Unit4, Springfield Road,
Chesham, Bucks. HP51PU.

EDITORIAL

I was not going to include an Editorial in this newsletter, but | notice that there is part of a page free and
so | am taking the opportunity to fill it. The reason for the free space is that, just in case you haven't
noticed, we have had this magazine typeset, and this has resulted in a dramatic reduction in the space
taken up by agivenamountoftext. ‘

One positive aspect of this typesetting is that our printing costs will be significantly reduced - produced
using our normal techniques this magazine would be 70 plus pages long. We should therefore be able
to contain subscription fees at their current annual level. There are however also a couple of negative
aspects. Firstly this magazine has been subject to delays very much above and beyond our normal
delays. Hopefully this will not be repeated as we all get used to the new modus operandi. Secondly
there is the psychological effect of the magazine appearing to be smaller (as itis thinner) than normal,
despite the fact that it does actually have a higher content than normal. Hopefully, as our readership
has a very much higher than standard level of intelligence, this will not prove a problem. [Ed. —this guy
thinks that creeping will get him out of anything!] [Ed.—Yes!]

Anyway, at long last here itis. Happy reading, and please letus know if you approve ofthe new format.




80 Bus News 3

Letters to the Editor
Bulletin Board

| am the SYSOP of CBBS South-West. This is a
bulletin board running the CBBS type of software
that runs under CP/M 2.2. The system is Nascom
based with a Nascom 2 and Nascom FDC with
Gemini 64k RAM board and Gemini RTC. The
Modems used are ex-BT and cater for 1200/75,
75/1200 and, of course, 300/300, and the selection
of modem type is AUTO select. The System has
been on-line for about 16 months and has received
around 15,000 calls. The computer is on-line 24
hours a day and the number is 0392 53116. 1 am a
member of AFPAS (Association of Free Public
Access Systems). The word format is 8 bits, No
Parity, 1 stop bit. | do get quite a few callers with
Nascom and Gemini systems.

Yours truly, B Hitchcock, Alphington, Devon.

80-BUS Reader Survey

With reference to the 80-BUS reader survey (i.e. the
Questionnaire} | have the following additional
comments to make:-

Why are Gemini still in the computer bus-
iness? Many rivals of b years ago have long
since gone. | believe that it is at least partly
due to offering things which others do not,
like ‘hardware support’ and ‘software supp-
ort’ to end users.

A user-expandable system is offered which
meets the ever growing needs of owners.
Multi-sourcing of some types of hardware for
use on a common BUS is a feature which
gives some feeling of security when parting
with hard earned money. The fact that rival
board suppliers suffer differences of opinion
does not seem to matter too much so long as
the end result works satisfactorily. It might be
better if rival manufacturers settled their

" differences and concentrated their efforts on
mutual survival of the 80-BUS.

We can all make rash decisions to buy imported
‘plastic boxes’ which will perform well in the
" immediate future, but what about product support
in 2 ~ 3 years time? Or being in possession of a
comprehensive hardware and system manual from
Day 1?7 The internal workings of many rival
computer systems are a well kept secret to owners.

Markets seem to be divided at present, between the
following:-
8-bit, 64K RAM, CP/M-80 or other,
16-bit, 256K RAM, CP/M-86 or other, mach-
ines.

When considering larger machines or hard disks,
the price takes off and reaches a level which is
beyond the sort of users buying our computer. It is
very desirable when a system is being expanded by
its owner.

Obsolescent board types could be offered at
reduced prices or as kits for those who have the
ability to assembile and test them but are short on
the means of paying. At least boards sold in this
way would stimulate a market for software, which
Gemini also sell. The trade in secondhand boards
should be encouraged to assist customers improv-
ing their systems by adding facilities or disposing
of redundant boards. Where would the motor
industry be without a used vehicle market?

For the 80-BUS News, | would like to see an article
on mains borne interference suppression. A differ-
ent ‘fridge in this household made my system
unusable until modifications were done to mains
input circuits. The magazine could support Micro-
soft BASIC in UK as nobody else seems to. To the
user, features on aspects of programming in pure
Microsoft BASIC, together with membership of
CPMUGUK, gives a useful software base without
a large financial outlay which would only be
justified if the computer was being used in
conjunction with a profitable business.

Keep up the good work.
Yours truly, A A Bryan, Cambridge.

Turbo Pascal — 1

Has anybody else bought TURBO PASCAL for a
Gemini? | bought it a few months ago after reading
glowing reports in various computer journals
including the CPMUG magazine. | bought it from
Grey Matter Ashburton, Devon, who can supply
software in Gemini formats. | do not intend to
review it as it has been done many times before.
The software comes with a built-in screen editor
and installation program. As | have come to expect,
Gemini is not on the standard list of terminals but
facilities are provided to enter each control code
separately so that the Gemini IVC can be used.
Obviously, you have to read the WC Manual to
check the required codes.

On attempting to use the screen editor (which is
like a mini WordStar), it did not work and the
computer hung up. We have all seen this before.
The problem is associated with polling the key-
board while sending control codes to the screen.
This upsets the IVC. | found that if locations %4133
— 4135 are patched to %0 and location *413B
changed from C8 (RET Z) to C9 (RET) then the
editor works. This patch removes a call to the
keyboard. The only difficulty that | have discovered
so far is that the ‘FIND + REPLACE’ function will
now only work in option ‘N’ mode and not in the



4 80 Bus News

default mode. (See page 31 in the manual.) | must
say that this has caused no real difficulty at all.

Yours truly, Tom Gibson, Middlesbrough, TS6
OHU.

Ed. — see my comments following the next letter.

Turbo Pascal -2

I have installed Borland International Turbo Pascal
onto my GeminilNascom system. With the Nas-
com video (generated using MOVCPMN) the
system works perfectly, but when trying to use the
IVC (Version 1.0}, the system hangs after trying to
edit a file. Other commands work perfectly and it
appears to be only when cursor addressing is used.
Have you come across this problem before or can
you suspect a cause?

By varying screen size that the Pascal recognizes
{from 10 x 20 thru’ 25 x 48 to 25 x 80) and varying
the delays generated after the cursor addressing, |
can vary the time between invoking the editor and
hanging occurring. By this | mean the number of
characters typed. | would appreciate any help.

Yours truly, R T Lea, Sarawak, East Malaysia.

Ed. — Well, Mr Lea, you can either apply the modification
suggested by Mr Gibson above, or you may like to get to
the source of the problem. Version 1.0 of the IVC-MON
{which was not in production for very long} did not
support any nested escape sequences. Later releases, as
well as including a number of enhancements, have been
modified so that certain sequences, including cursor
addressing, can accept nesting. The differences between
releases of IVC-MON were published in 80-BUS News
Volume 3, Issue 2, pages 48 and 43, in an interesting
article giving an insight into the hardware and software
design philosophy used in the development of the Gemini
GM812 IVC, and its successor, the GM832 SVC. You
should find, as should Mr Gibson, that replacing your
IVC-MON V1.0 with any later release will eradicate your
problem.

An IVC Problem?

| have recently come across an intriguing problem
with WordStar when used on a system which
incorporates IVC-MON 2.0 and the keyboard is
attached to the GM812 video card. if the ESC key is
pressed {as may be necessary if an error or
interruption occurs), a List/Edit Function key
message is produced - not much use if you haven't
got the appropriate keyboard and a *%%%
nuisance as well since the system may lock-up and
often has to be cold booted to clear the problem.

| am currently running SYS and can have the
keyboard attached to the CPU card or the IVC. By

attaching the keyboard to the CPU card, the ESC
key functions normally and WordStar does not
become confused, If a version of SYS is not used,
link 3 on the IVC will need to be adjusted so that the
keyboard can be used on the CPU card.

Yours truly, Dr P D Coker, Orpington, Kent.

Ed. — the clue to your problem lies in the fact that the
keyboard works OK on the CPU board, and not on the IVC.
Firstly, why use it that way round anyway? | cannot think
of any advantage to that approach, and a definite
disadvantage is that you lose the type-ahead buffer.
Secondly, | bet that you have a GM821 keyboard, and that
you don’t get the ‘List/Edit ... message until you have
pressed the ‘ESC’ key twice, right? To explain what is
happening I'll just give a little history on Gemini
keyboards.

First of all came the GM821 keyboard (very originally
known as the G613). This has 59 keys and can, with
various permutations of Normal, Shift, Control, and
Shift/Control, produce 128 ASCII codes, thus using 7 bits
of the interface. The 8th bit is used as a strobe, and the
keyboard can be connected to the keyboard interface on
the GM811 CPU, GM812 IVC and GM832 SVC boards.
When Gemini decided to produce the GM827 keyboard,
with 87 keys, some of the keys were used to obviate the
necessity for the Shift/‘Control permutations. In addition
30 keys were added to be user-definable separately in
Normal and Shifted modes. These obviously require
additional codes, but with only 7 bits available the
question was ‘How?'. The answer was to make them all
double-byte codes, and to pick one existing code as the
first byte 'key’. The one chosen was the ESC key, code
1BH. This key was therefore redefined as the first in the
double-byte sequence, 1B 00, and all of the function keys
carried on from there, FO = 1B 01, F1 = 1B 02, ... and so
on. The IVC-MON {Version 2.0 and later) was modified to
include support for these codes. One of the user
selectable links on the IVC {one of the switches on the
SVC) determines whether the keyboard to be used is the
GM821 or GM827/GM8562. (The GM852 is a low-profile
version of the GM827 with the only differences being that
it is also available in a serial version, and that the very
latest ones extend the user-defined keys into the Control
mode as well.) If GM821 is selected then the code is
passed on directly, if GM827/GMB852 is selected then all
codes are passed on directly unless a 1BH is received, in
which case it waits for the next code and translates it to
the user-defined string held in its workspace RAM.

And so back to Dr Coker’s problem. If the [VC-MON (or
SVYC-MON)} believes that the keyboard is a GM827/
GMS852, but it is in fact a GM821, then when the ESC key
is pressed the keyboard outputs the code 1BH, which tells
the IVC-MON that this is a special case, and that another
code will be used to select a user-defined string.
Consequently nothing will happen until another key is
pressed, and depending on what this is will determine
what the IVC/SVC actually passes onto the system. If this
is the ESC key again (being pressed in the belief that the




80 Bus News 5

first time was missed) then it just so happens that the
string 1B 1B corresponds to the ‘List/Edit ..." request.

For information and interest, let's just consider what
would happen the other way round (i.e. keyboard is
GM827/GM852, but IVC/SVC is set to GMB821). The
software is not looking for double-byte codes anymore,
and so all function keys, plus the ESC key, will result in
two characters being received, a 1BH plus another
character. In particular, the ESC key will return 1B 00, and
this will result in the correct action being taken for the
ESC, but the 00 will put the system into Edit Mode. At the
wrong time this may be disastrous! {N.B. The Gemini
BIOSs have always allowed the Edit Mode code to be
redefined if required, and the latest versions (V3.2 and
later) allow it to be disabled altogether.

| hope that the above is useful {and understandablel).

BBC BASIC (Z80)

In the ‘Letters to the Editor’ in the July — August
1984 edition of 80-BUS News (Volume 3, Issue 4),
mention was made by Chris Hellen of Colchester of
a BBC BASIC (Z80) for Z-80 based microcomputers
including those of 80-BUS construction. This BBC
BASIC was written by R T Russell and marketed by
M-Tech of Norwich.

Please may | ask if you know the full address of
M-Tech of Norwich, from whom further details of
BBC Basic (Z80) might be obtained?

Yours truly, lan Manning, Bristol. .

Ed. — Most Gemini dealers should be able to obtain this
for you, and in particular | do know that Off-Records in
London deal extensively with this product.

_Pleasant Uncertainty

Dear Editor (etc, etc)

Hello, John. It's me again, ANGRY of Tonyrefail
{remember!).

I've just read (and re-read) with great interest the
VERY LATEST issue of 80-BUS News — July/Aug
1984. '

What | want to know is, what's all this talk of
-printing my favourite 80-BUS oriented magazine
on a ‘regular-as-clockwork’ type basis (Ed’s com-
ments, bottom of page 4). Look Tosh, if one wants
one's reading matter delivered regularly, one could
buy a subscription to PCW or Practical Computing
or any one of the numerous other ‘pulp’ mags.

In my opinion, one of the best features of the good
ol’ 80-BUS is the sense of nerve-tingling expect-
ation one gets from wondering just exactly WHEN
the next issue will flop through the letter box. With

other mags. one starts to think “July is here, | can
hardly wait for this month’s issue of XYZ magazine
to arrive!”. But when one has a subscription to
YOUR particular rag, one usually thinks “July is
here, | wonder WHEN the March issue of 80-BUS
will arrive??1”

If you proceed with your threat to print 80-BUS
News reguiarly, | will CANCEL my subscription!!

The regularity of 80-BUS is analogous to the
general condition of most people’s Nascoms, ie,
“Will 80-BUS be printed this month?”, and “Will
my Nascom work when | switch it on” (sez it all
really, doesn't itl).

Now to something totally different. Please inform
Roger Dowling who's running a Users’ Group for
NasDos that | DEMAND an immediate retraction of
his statement on Page 6 of this issue of 80-BUS —
“The PolyDos Users Group only has 6 members”.
Let it be known to all, said Polydos Users Group
now has a total membership of 8 (or 17 if you count
everyone twice. Now | NEVER said maths was my
strong pointl). f Mr Dowling does not wish to
retract his grossly inaccurate statement, please
inform him that | am quite willing to be persuaded
by a generous donation to my favourite bank
account.

Oh heck, is that the time! If | hurry I'll just have
enough time to flog a few peasants before lunch.

Yours truly, Dave ‘Head-Crash’ Richards, Tony-
refail, South Wales.

More Logic ?

Thank you for printing my article on Lucas in
80-BUS, Vol 3 No 4. Logic (llogic?) have sorted out
my MDISK and XBASIC problem. | wrote to the
General Manager (Mr Peter Seddon) who prodded
the Engineering Manager (Mr Phil Purssell), who
passed it on to John Phoenix. This last (untitied!)
chap updated my XBASIC master disk for me, and
MDISK under XBASIC is very nice, thank you very
much. But who pays for all my postage?

The moral of the story:-

If you're having troubles in an illogical way
And your letters are being chucked into the
bay .
Don’t mess about with the bottom of the tip
Climb every mountain

And give Peter Seddon a lot of lip

Apologies to Mr-Seddon, but it's been a year of
nearly wasted programming!

Yours truly, Dr David Plews, Keighley, W Yorks.



-6 80 Bus News

CP/M User Group

| would like to echo David Plews’ comments in
praise of the CPMUGUK (Vol 3, Issue 4 of 80-BUS
News). | joined some months ago and soon found
their journal essential reading (as is 80-BUS News
“of course!l). The quantity of virtually free software
is incredible. | haven't even read all the index yet!
The service from the ‘Librarian’ (Derek Fordred) is
excellent; | normally receive disks within 9 days of
posting off my request.

I have just received a graphics suite called PLOT 33
on SIG/M Volume 194. This suite allows the
production of pictures, graphs, bar charts, etc, on
my Epson MX80 type il. It can be driven from
MBASIC, TURBO PASCAL and FORTRAN. It is
extremely well documented — approximately 25
pages. It is easily configured to any of the popular
dot matrix printers with addressable dot graphics.
When | get the hang of it a bit better, I'll try and
write a review for 80-BUS News.

On another subject, the free ad. | placed in Vol 3, Iss
4 worked — | sold my PCG within a week of
publication. Dr Plews may do better from his ad. in
the same issue if it has contained his correct phone
number! Ed. — Dr Plews has sent us his correct number,
it is (they arel) Day 0535 52511, Evening 0535 54157. |
have so far failed to contact him. By the way, | may
be able to help him in dumping AVC pictures to his
printer - | have unravelled GDUMP from Lucas
Logic and modified it to operate as a subroutine to
be called from Basic, etc,. | have also relocated it.

In addition, |.have written routines to dump the
AVC image to my Epson the right way up and
smaller than the sideways picture produced by
GDUMP. Any of these should be easily adapted to
drive David's Gemini 10X.

Now a quick plug — these “dump” programs and.
many others are currently circulating on the
NASDOS USERS GROUP DISKS (yes, twol).

Yours truly, Colin Case, Rugby.

Business Computer Developments

D The Saddlery
(m] O 113 Station Road.
D Chingford
E47BU Phone 01-524 2537
COMPREHENSIVE PRODUCT RANGE, INDEPENDENT SERVICE AND COMPETITIVE PRICES
WORD PROCESSING & TEXT EDITING PROGRAMMING LANGUAGES
MicroPro ADA
WORDMASTER 70 Watch this space
WORDSTAR 200 ASSEMBLERS .
WORDSTAR PROFESSIONAL 209 Digital Research 145
Microsoft MACRO 80 165
PLANNING & DATA MANAGEMENT BASIC
Digital Research comp. 325
Ashion-Tate interpreter 95
dBASE I (2.43) 250 Microsoft compiler 325
Microsoft interpreter 300
MULTIPLAN 145 Xitan XBASIC interpreter 185
SorcimiUS
SUPERCALCH 175 Digital Research 275
Abtex Ecosoft ECO-C (needs M80} 165
PERTMASTER 590 ECO-C plus M80 299
ECO-C + MB0 + K&R 315
STATISTICS COBOL
Microfocus CiS COBOL 325
Ecosoft CIS + FORMS2 + ANIM 585
MICROSTAT (4.1) 275 LEVELH P 735
SOURCEWRITER 625
Microsoft 475
TRAINING SOFTWARE CORAL
British Telecom 950
MicroCal HANDS-ON FORTRAN
BASIC 150 Digital Research 395
CPM 80 Microsoft 385
COBOL 330 Prospero PRO-FORTRAN 195
dBASE #l 806 PASCAL
MULTIPLAN 80 Digital Research MT + 250
MAC Microsoft 250
WP Workshops 75 Prospero PRO-PASCAL 195
UK Sailes post free but add 15% VAT Access & Visa welcome

Please state which disk format you require and make cheques payable to ‘BCD’
All popular operating systems supported — CP/M CP/M-86 MS-DOS PC-DOS UNIX
DEALER/CONSULTANT / QUANTITY AND EDUCATIONAL DISCOUNTS AVAILABLE
Product and operating systems referred to are trademarks or registered of the companies of origin




80 Bus News 7

THE DH BITS
by Dave Hunt

In this section of miscellaneous ramblings, the
always verbose David Hunt looks at copying files
via dBASEIl, changes that have occurred in
different versions of dBASEI, disk sector skewing,
disk blocking/deblocking, how to expand a Nas-
com based system, a tip on using the Pretzel
program, and a look at the Gateway and Pathway
programs.

Speeding up dBASE Husing RAM-disks

Following on from my other article concerning
adding machine code patches to dBASEIl, a new
routine has had to be written lately. So this bit is for
dBASE aficionados, although it contains a warning
for all who would write simple file copying
routines.

Now those who know dBASE will know the
geriatric performance it puts in when indexing files
with a good few thousand records. Far too slow on
a floppy disk, somewhat better on a Winnie and
just reasonable on a RAM disk. Further, versions of
dBASE earlier than V2.41 get very slow when
updating files with multiple indexes.

An aside about dBASE V2.41

By the way, dBASE V2.41 has what appears to be
horrific change of philosophy which | believe has
led to its rapid replacement with the current
version, V2.43, so anyone with version 2.41, watch
out when trying the following:

@ x,y GET input
READ

- FIND &input
DO WHILE input=record
{... do your thing ...}
SKIP
ENDDO

What all versions of dBASE, except V2.41 do, is that
the FIND function finds the first occurrence of the

find criteria, whilst the DO WHILE - SKIP loop then

finds all following entries where the input and
record criteria match, the loop cops out when the
criteria no longer match. Basically it works through
a matching list in order of entry until it no longer
matches. V2.41 is something different. Using the
same routine, the FIND will find the first occurrence
as before, but for some unexplained reason, it then
sets the record pointer to the end of the list, so the
following DO WHILE - SKIP loop will immediately
find the next record does not match and cop out.
The way round it is to rewrite the program:

@ x,y GET input

READ

FIND &input

DO WHILE input=record
{... do your thing ...}
SKIP. -1

ENDDO

In this case it appears to almost work backwards
through the list (almost, as the first record found is
still the first in the list}, not a disaster, and in many
ways more convenient as it's more often than not
the last in the list you're looking for, not the first.
But what about all the programs written for other
versions of dBASE, they're incompatiblel!

To tell the truth 1 didn’t find this, Trevor at ACC did,
when it screwed up an invoicing program | had
written. He phoned me to discover what special
feature it was that I'd added to the latest version of
the program that didn’t work. | started invest-
igating! | assumed this was a new feature of V2.41,
and you now had the option for either backwards
or forwards search {(very useful), but i could find no
reference to it in the manual and no way of
switching back to ‘normal’. As | said, V2.43
followed hot on the heals of V2.41, and that works
‘normally’, so perhaps the V2.41 anomaly was
considered as a bug. To be fair, | only had one copy
of V2.41 to test, and this was replaced with V2.43,
so perhaps it was a corrupt disk or something,
although I've yet to hear of a corrupt disk causing
a complete change in philosophy, corrupt disks
usually crash.

And so back to the indexing problem.

Now lets take the real life situation, it's a stock
control program working on a Gemini with a 10M
Winnie. The main stock file has something like 2000
records in it and the transaction file has about 6000
and increases with each stock movement. The
stock file has three indexes all on at once, whilst the
transaction record is indexed by date and the
paperwork reference number. Believe me there's
some index churning going on. Given that indexing
is pretty fast in a RAM disk, the problem is getting
the indexes there safely.

One way round is to copy the files to the RAM disk
before operating the dBASE program, and then
copying them back on close down, you'll away
remember to do it, won't you??!1? But what about
the idiots who usually use the program, they'll
either forget to copy the indexes first in which case
the programs won‘t work, or worse, they’ll forget to
copy them back when they've finished. Another
way would be to reindex the programs onto the
RAM disk each time the program’s started, Ok, and
no need to copy the files back. But even with a RAM
disk, the reindexing process takes some time. |
suppose the whole program could be run under a



8 80 Bus News

SUBMIT file, to PIP the indexes back and forth, but
| don't like SUBMIT files for uneducated use, and
anyway, they're messy. No the answer is to make
dBASE do the job as part of the program.

Now dBASE can copy data files around with
impunity, and it can create new files all over the
place, but can it copy index files from one drive to
another, no way! The same applies to .CMD, .FMT
and .MEM files as well, but | can’t see why anyone
would want to copy these.

The simplest answer is a ‘mini-PIP’ program which
will transfer the indexes to the RAM disk and back
again. A very simple little program was written to
open an input file, open an output file and copy it
sector by sector. Dead simple you might think!
Let's have a look at the snags which could befall the
unwary.

We need two file control block for a start, and
because the program is to be used generally, we
need a space to transfer the names of the files to be
copied into. No problem there. You can-see from
the first bit of the progam the ‘to’ drive name, and
the ‘from’ drive name and file name space. | put
them at the front of the program as that's easy to
find when POKEing around to fill in the names. The
POKE location for the names is always three bytes
in from the start of the program no matter how |
hack the program around and change its length.
Note that there is no check to see if you're trying to
write to the same drive. As the program is going to
get it's parameters from the dBASE program, and
no user intervention is required, that sort of
mistake can’t happen. Can it?

The program starts off by clearing the space behind
the ‘from’ name as this is the file control block for
the following ‘search for first'. If you forget to clear
this fcb, then CP/M does strange things with the
‘search for first'.

The ‘search for first’ is to check for the presence of
the named files, if they're not found, then the
program returns home immediately. Here comes
the first snag! The ‘search for first’ returns Offh if
there are no files present, otherwise, it copies the
sector of the directory where it found the first entry
into the current DMA workspace and returns with
A set to the number of the entry in that sector.
Checking for Offh is dead easy, anything else in A
assumes that at least one file was found. Having
established the presence of the files, where the
heck is the current DMA, as dBASE, sure as eggs is
eggs, didn't leave it at the default DMA of 0080h.
We need this address as we have to copy the file
name we have found to the file workspace buffer,
as we intend to make a list of all the files required
before we start the copy process.

A little investigation revealed that different vers-
ions of dBASE leave the DMA at different addr-
esses. All around 98XXh, but not consistent. So

putting a fixed address into the program is not on.
The next thought was that CP/M must know where
the DMA address is, but there’s no command to
return it. Perhaps it could be found in a CP/M
workspace someplace? That way | could cheat and
calculate a fixed offset from some known location
within CP/M. | looked, it appeared twice, and both
in the BIOS. Now the notorious thing about BIOSs.
is that each version is different, so odds on that the
DMA pointers will move around between versions,
and anyway, which one of the two pointers to use?
No forget that approach. The last resort was the
obvious, set the DMA pointer myself. My objection
to this was, what would dBASE do? Without
disassembling large chunks of it, there was (and
still is) no way | could be sure that dBASE would
reset the DMA pointer correctly before using one of
it's overlays, or whatever. Or whether in fact this
would matter. | took a chance and set the DMA to-
0080h. dBASE continued to work, and so far
nothing odd appears to have happened. But I'm
still unhappy about it.

So before the ‘search for first’, there is a ‘set DMA’
so | know where to retrieve the data.

Unfortunately, having found a file name, you can't
use it immediately to copy the file to the new drive,
as the copy process causes the ‘search for first’ —
‘search for next’ to forget where it was, so the file
names must be found first and stored in a
workspace for copying later. Having found the first
entry, the position in the DMA buffer is calculated
and the name found copied to the file workspace
buffer. The program drops through to the search
for next’ and loops until all the names are in the
buffer. So | know where the end of the buffer is, |
stuck a null on the end of it.

The next bit was a piece of cake. Copy the first
name found into the first and second fcb's, open
the files and read a sector from the input file into
the DMA and then write the DMA out to the output
file. When the file was all copied, close the output
file and pick up the next name in the list and do it
all again until the name in the list was a null,
indicating the end of the list. Simple and very quick.

| didn't bother to check the validity of the files as
Winnie to RAM disk copies are always reliable and
anyway what could | do if there was an error? The
whole process was quite quick, shovelling about
200K of indexes in about 30 seconds.

From the foregoing, you can see I'm all for the KISS
philosophy. KISS, ‘Keep It Simple, Stupid” on the
grounds that if it's simple it should work Ok,
anyway, if it didn't then it should be a doddle to fix.

Having got the routine working, a thought occurr-
ed! Why not make the routine make the backup
copy disks as the machine shuts down. That's
about 650K from Winnie to disk. | tried it. It took 45
minutes!!! A very much confused DH sat down to




80 Bus News 9

think about this one. Why did it only take 30
seconds to copy 200k from Winnie to RAM disk
(and a little bit longer the other way round) and yet
45 minutes to copy 650 odd K from Winnie to disk?

The answer was very simple and easily forgotten,
and goes way way back to the first disk systems for
Nascom and Gemini {remember | had a finger in

that pie all those years back). It's called disk:

skewing.

All you ever needed to know about disk skew, and
were afraid to ask!!

More often than not, customers new to Nascom
and Gemini disk systems using the Gemini CP/M
ask what the format routine means when it asks for
a skew factor. Now | don’t know what the Gemini
manuals say about skewing as, in common with
most users, | haven't read them. But the point is
easy to grasp once you know what's going on.

A virgin disk straight out of the box has nothing
recorded on it so the first thing is to format the disk.
This defines the way in which the data will later be
stored on the disk. Think about what the format
program does when it sets up the disk. The format
program constructs an image of a disk track in RAM
and then writes the image to the disk, a complete
track at a time. The disk contains a number of tracks
starting at track 0 at the outer edge and working
inwards, track 1, track 2, etc., to the innermost track
of the disk, be it track 34, track 39, track 76 or 80,
depending upon the flavour of drive.

Now the disk is also split like the slices of a cake,
radial lines from the centre of the disk to the
outside. Where the lines cross the tracks, these
become sectors, so each track is sliced up into a
number of sectors. The data area of each sector will
usually be in multiples of 128 bytes, 128, 256, 512
or 1024. Rarely more than this for reasons to be
revealed. The first sector is indicated by the index
hole in the disk. Note | said the data area of each
sector, as a sector contains more than just the data
bytes. The disk controller needs to be synchronized
with the data on the disk, so the start of each sector
contains some synchronization bytes. Next the
controller likes to know were it's at, so there are a
few bytes saying the track and sector numbers (and
also the ‘sides’ byte, saying what side of the disk
this is, a real pain that one). This is followed by a
checksum, the header CRC. Then a few more sync
" bytes and the start of data mark. After all that, then
comes the data, the format program sets these to
DeSh, followed by another checksum, the data CRC.
To polish the sector off there are a few more bytes,
the sector gap, usually some Offh’s before the start
of the next sector. The last sector perhaps has afew
more 0ffh’s on the end, to pad the sector up to the
index hole, as you can never be too precise as to
the actual exact number of bytes on a track, as the
whole process is at the mercy of the vagaries of the

speed constancy of the disk drive motor and the
controller clocking speed. Putting too few sectors
on a disk is preferable to too many, as the format
program which sets all this up in the first place
starts and stops writing when it sees the index -
hole. Too much data and the last sector will be
incomplete causing fatal disk errors. (This error
occurs when formatting disks on a cold day with
the drives running slower than usual.)

From all that, you can see the incentive is to make
as few sectors per track as possible. The fewer the
sectors the less space wasted on sync and track
and sector headers, et al, and the more real data
space available. So why rarely more than 1024
bytes in a sector? Well the disk controiler is a phase
locked loop device, and when receiving data (as
opposed to sync bytes which it can recognize) the
data transitions should appear in the right places
keeping the loop in lock, but mechanical problems
like sticky disks, cold {or hot) drives, etc., tend to
cause the data transitions to occur out of step. The
phase lock tries, but there must come a time when
it slips a ‘bit’. The reliability of the system depends
on the mechanical stability of the drive and media
and the electrical stability of the controller phase
lock. Tolerances in either direction must be allowed
for, so the best way of keeping the whole thing in
step is frequent sync pulses, which from a data
storage point of view are a waste of space. So the
trade-off is the number of sync pulses, hence the
number of sectors, against the ability of the system
to stay synchronized. For good reliabilty, this limits
it to sectors of no more than 1024 data bytes. No
doubt there are those who will argue that their
machine can reliably read a whole track at a time.
I don't doubt it, but what about the next machine?

So having demolished the way a disk is mapped,
what about this business of ‘skew’? Consider!
CP/M is about to load a program. CP/M has a map
of the disk internally (it's stored as part of the
directory information). The map CP/M has is not
the same as the disk map constructed by the format
program. Simply it consists of blocks numbered in
sequence from the end of the system tracks and
directory space, block 0 might be at the start of a
track, or could even be someway through a track.
Blocks may be 1, 2 or 4K in size, and CP/M makes
a calculation considering the sector size of the disk,
and then adding the system track and directory
space offset to determine the appropriate track and
sector. For the sake of example, CP/M has
calculated that the first track/sector of the program
is 4/1. This information is passed to the disk
controlier to fetch track 4 sector 1. The disk head
steps to the correct track, reads data until it
recognizes the sync bytes, and reads the next
sector header it sees. This header will tell it it's on
the right track {or not}, and as this happened at
some random time, like as not, the sector number
will be wrong. The disk, of course, continues to



10 80 Bus News

rotate, until some time later, the correct track/
sector header will pass the head. At this instant, the
controller looks for the data start mark, and when
that's found it then reads the following data.

Having got the data, control is passed back to CP/M
which now has to calculate the next track/sector
required. CP/M decides that the track/sector will be
4/2, the next sector. An instruction is issued to the
controlier, and the previous process is repeated,
except that the controller now knows that it is on
track 4 (the last sector was on track 4, and nothing
has changed, so the head must still be on track 4).
Unfortunately, whilst all this was going on, the disk
of course continued to rotate, so by the time the
system has made up its mind that it is sector 2 it is
looking for, the header for sector 2 has just passed
the head. This means that the disk must make a full
rotation before sector 2 again passes the head. As
the disk rotates at 300 rpm, that means that 200mS
must elapse before the next sector can be read.
Considering that a typical Gemini system reads a
512 byte sector in 20mS, this hanging about is a
real pain. it would take ten times as long to load a
program under these circumstances as it would if
we arrange the sectors to be in the correct places
when CP/M wanted them.

So we introduce ‘skew’ in to the format program,
we alter the way the sectors are numbered on the
disk, on a Gemini system, a ‘straight’ skew of:

Sector number 1 2 3 4 5 6 7 8 9 10
becomes something like

Sector number 1 6 2 7 3 8 4 9 5 10

| say something like this, as | haven’t bothered to
look at the actual Gemini skew, so | might have it
slightly out, but no matter. This is a ‘skew’ of 2, that
is the sectors appear in order in 2's, read one, skip
one, and so on. See what happens, having read
sector 1, and then requiring sector 2, the longest
wait would be 20mS whilst sector 6 went past.
Plenty of time to calculate the next track/sector as
being sector 2.

Lets suppose that some program we have written
is required to read the disk and actually does some
preprocessing between sector reads, or that the
system clock is running at 2MHz rather than 4MHz.
Then things slow up again as even with a skew of
2, the 20mS between consecutively numbered
sectors is not long enough. In that case, to restore
the speed to something like normal, a skew of 3
may be required.

So by now the business of skewing the disk has
been taken care off, the only remaining question is
if this problem has been known for a long time,
why didn’t Digital Research do something to CP/M
to correct the situation instead of skewing the disks

on formatting? The answer is that they did, right
from the start. This is called ‘logical to physical
sector translation’. Inside CP/M is the sector
translation table. lt assumes that the disk is
formatted in 1, 2, 3, ... order, and therefore the
CP/M calculation to get a certain logical sector
must be translated into the appropriate physical
sector.

Lets take the case of a skew of 2 illustrated above.
CP/M calculates it wants logical sector 1, so it goes
to the ‘logical — physical sector translation’ table
and looks up logical sector 1 which comes back as
physical sector 1. For the next sector, it calculates
logical sector 2 which is translated into physical
sector 3, logicat sector 3 becomes physical sector 5,
and so on. There are a couple of good reasons for
not using the ‘logical to physical sector translation’
one is that you can't alter it easily. But worse, if the
disk were transported to another machine with a
different “translation’ the sectors would be read in
the wrong order, so data would become garbage
and programs would crash. The advantages of
using physical disk skewing is that you have
control of it and even if a disk were transported to
a different machine and the skew were wrong, then
the disk would read slowly, but it would get there
eventually and get it right.

The very early Henelec/Gemini GMB05 had a
‘logical to physical translation’ of 6 which was
originally intended for 8” disk systems. {I think it
was built in permanently to CP/M 1.4, so couldn’t
be changed to something more appropriate.) This
made the GM805 system slow, and | remember
sitting down one evening with Eddie Pounce and
playing with strips of cardboard numbered in
sectors and sliding one against the other until an
optimum skew was arrived at. As | remember, it
ended up as a negative number, as we already had
a positive skew of 6, we needed to skew the disk
backwards to improve matters. The skew tables for
2 and 4MHz were then added into the format
routine written by Richard Cowdroy supplied with
the system to become Version 2.0 of the formatter.
All great fun when you have both physical skewing
and ‘logical to physical sector translation’.

Back to the problem

So, back to the beginning, how come my stupid
copy routine took so long to write out its files to
disk. Simple, the timing was all to pot. But not by
the obvious skewing problem of the routine taking
too much time between sectors. It was in fact a
whole different can of worms called ‘sector
deblocking’, something I'll hold over until another
time, but brief explanation is required.

CP/M was originally designed for use with 8"
systems conforming to 1BM3740 spec. The disks
had physical 128 byte sectors, so it was sensible to
make CP/M work internally with 128 byte sectors.



80 Bus News 11

With the advent of high capacity disk systems, and
the need to make the sectors larger, CP/M had a
problem as physical sectors were no longer 128
bytes long. CP/M 2.2 introduced this idea called
sector deblocking which overcomes the problem of
different systems with different size sectors, at the
same time leaving CP/M internally compatible with
128 byte sectors, which CP/M programs still use
{compatibility between CP/M 1.4 and CP/M 2.2).
CP/M now carries out a two stage disk access.
Firstly it calculates the start of physical track/sector
containing the 128 bytes it's after. This n-length
sector (512 bytes in the case of Gemini) is read into
a work space called the deblocking buffer. Next
CP/M calculates the place in the buffer where the
128 byte sector resides and copies it to the DMA
address as if the 128 bytes came straight from the
disk in a old CP/M system (or one which still uses
physical 128 byte sectors}.

The problem was | was reading and ‘writing 128
byte logical ‘sectors’ (in inverted commas, as the
Gemini physical sector size is 512 bytes). The
process for one single 128 byte ‘sector’ goes like
this: )

READ {from Winnie)
CP/M calculates the appropriate phys-
ical track/sector where the 128 bytes
required are situated.
Wait for that sector to appear (very fast
as the Winnie controller probably
knows where it is).
Read in that physical sector to the
deblocking buffer.
Calculate the position of the 128 byte
logical sector.
Copy the 128 bytes required to the DMA
area.

WRITE (to disk)
CP/M calculates the appropriate 512
byte physical track/sector where the
128 bytes are going to go.
Wait for that sector to appear (up to
199mS delay)
Read that physical sector into the
deblocking buffer.
Now write the 128 byte logical sector
from the DMA buffer into the deblock-
ing buffer.
Wait for the physical 512 byte sector to
appear again (200mS delay)
Write out the deblocking buffer to the
512 byte physical sector on the disk.

So you can see, there might be the best part of half
a second between consecutive 128 byte sectors,
and there's an awful fot of 128 byte sectors in 650
odd K1l OK, so conversely, how come it worked so
well between the Winnie and the RAM disk. Again,
simple. In the case of the RAM disk, the thing is
RAM, so no delays in waiting for sectors to come
past, and it's configured in 128 byte sectors anyway

{I think). Just calculate the address and shove the
data at it. The Winnie is less obvious. It's all to do
with the Xebec controller fitted. The real purpose of
the Xebec is to act as a high speed interface
between the Winnie which reels data in and out at
mega-bits per second, and the computer which is
quite pedestrian by comparison, only working in
hundreds of kilo-bits per second. The Xebec
contains a large RAM buffer for the Winnie to work
in, so shovelling 128 bytes at a time is just like
talking to a RAM disk. The Xebec’s own processors
{two wierd dedicated things and a Z80) and RAM
take over after the data has been captured, so
again, no hanging about for sectors to appear in
the right place before a read or write occurs.

So how could | speed up the Winnie to disk copy
routine? Well the cause of the problem is this
swapping of data about in the deblocking buffer.
The deblocking logic is quite clever, although if
you've read the source, quite messy. It knows not
to flush the buffer if the same physical track/sector
information is still current and no data write has
been made to it. If a write to it has been made, then
is still doesn’t write whilst the same physical
track/sector remains current. However, as soon as
the physical track/sector is changed, or the file is
opened or closed, then the buffer is flushed if no
writes were made, or written out then flushed if
writes were made to it.

in a sequential read or write situation then, the
deblocking knows what's going on, so assuming
that a write of a newly created sector was to be
made, the 512 bytes of data is accumulated in the
deblock buffer, and when complete, the whole
physical sector is written out without any delay
caused by reading in the sector and then writing it
out. Likewise on a read, reading sequentially
means that four 128 byte logical sectors are read
into the deblock buffer and processed one at a
time, the next read would be of the next 512
physical byte sector. {On a Nascom or Gemini the
normal ‘skew’ of 2 allows this to happen effic-
iently.) So the answer would be not to read in 128
bytes then write it out again, but to read in at least
512 bytes and then to write it out again. In fact 512
bytes is not really enough. Better still to read in as
much as possible into the TPA, say from the end of
the copy program to the base to CCP, and then to
write it out as a lump. This is how SWEEP or PIP
work {have you Gemini MultiNet network owners
noticed that PIP seems slower with the smaller TPA
on the server using the 24K network system than
when using the 64K normal system?).

| didn't bother to do this with the ‘mini-PIP’ for
transfering the indexes about, as the calculation of
available TPA space and the complications of
reading and writing buffer-fulls of data wasn't
worth the effort. Apart from that it meant more
‘decimalized’ POKE space within the dBASE prog-
ram, making the thing more difficult to patch by



12 80 Bus News

hand if need be. The program fulfilled its main
purpose, and the backup disks are made using the
separate BACKUP program which had been used
previously.

Nascom — Where now?

Fairly regularly people walk in the shop and say,
“I've got an old Nascom 2 and don’t know whether
to get rid of it or spend some loot and upgrade it.”.
Well two things are apparent, firstly there are a lot
of Nascom 2’s still around {there should be, as
nearly 10,000 were made before Lucas got there
paws on the show), and secondly a lot of people
are still dedicated to the machine which in all
probability they sweated blood over building some
three or four years back.

The problem is doing anything with a Nascom
works out expensive. Possibly the cheapest way
out is to flog the Nascom to some unsuspecting
mug and then go and buy a Beeb, a Spectrum, a
Commodore or some other such Mickey Mouse
computer. But then none of these has the potential
of an expanded Nascom, despite the plethora of
add-on bits you can get for them.

All the following comments apply equally to the
Nascom 1, but remember that for optimum results
the N1 should be capable of running at 4MHz
{although the disk systems will run as slow as
2MHz with no wait states) and the N1 should have
a decent buffer board. The original Nascom buffer
board wasn’t too clever! The Gemini GMB06AK
combined backplane-cum-buffer board is fine.
(This IS still available, so don’t believe any dealer
who says he can’t get it for you anymore.)

The only viable upgrade of a Nascom is towards
disks, a goodly few have already taken that course,
and | think those who have gone that way are
happy. Expensive certainly, but stili worth the
money as the end result still costs less than going
out and buying an equivalent machine from new.
However, even this route is becoming more
circumscribed as Lucas seem to contract their
Nascom operation and Gemini have reduced the
number of options available. MAP are still around
and in there somewhere, but | haven't heard from
them for some time.

All permutations would need at least 48K of RAM
and all would require disk drives. The drives would
be either single or double sided 80 track drives. The
drive boxes available from the various 80-BUS
manufacturers are all comparitively expensive, and
cheaper equivalents can be found advertised as
options for the Beeb computer. But watch the
specs. Check that what you are buying does or
does not include power supplies (as required) and
that 40/80 track types are really 80 track types and
not some ‘cod’ used by the various DOSes for the
Beeb.

The basic choices left are:

1) Nascom NASDOS with the Nascom
controller card, with or without the AVC
card.

2) Nascom CP/M with the Nascom disk
controller and AVC cards.

3) Gemini CPIM with the Gemini disk
controller and IVC or SVC cards.

4) MAP CP/M with the MAP VFC disk
controller/video card.

5) Careful permutations of 3 and 4.

Choice 1) Uses the original Nascom screen display
and needs the Nascom disk controller card. It may
well not be the best choice, for although NASDOS
allows the use of your original Nascom software,
little if any new software has been made available.

Choice 2) Uses the original Nascom screen display
and needs the Nascom disk controller card. Not a
bad choice, CP/M 2.2 seems to be the route to take.
The Nascom CP/M uses the Nascom AVC as either
a colour display or as an 80 column display (very
necessary for CP/M). The Nascom AVC is a bit slow
in the 80 column mode.

The problem with either choices 1) or 2} is likely to
be support. Most of Nascoms’ old faithful dealers
now no longer stock Nascom products and Lucas
do not seem to be encouraging new dealers. The
only dealer (as far as | am aware) able to offer full
support for Nascom products these daysis B & L
Micros at Kenilworth. So unless you live in the
Midlands, the Nascom options might not be
advisable.

Choice 3) Uses the Gemini GM829 disk controller
card or the (now obsolete) GM809 card. Possibly
the most universal choice. There were more
Nascom/Gemini hybrids in the recent 80BUS
survey than anything else except straight Gemini
systems. Gemini have recently reduced the perm-
utations of CP/M 2.2 for Nascom, so the only
version currently available uses single or double
sided 80 track drives and must use either the
Gemini SVC or the (now obsolete) IVC card. This
makes it the most expensive choice, but it wins on
both overall operating speed and disk capacity.
You could save money by using secondhand
GMB809 and GM812 cards as these still seem to be
around in small quantities from people who have
upgraded to GM829 and GM832 respectively.

Choice 4} Uses the MAP VFC combined video and
disk controller card. Available with either CP/M 2.2
or CP/M 3. (None of the other manufacturers have
opted for CP/M 3 as there is little to show for the
increased cost.) About the same price as the
straight Gemini choice using secondhand cards.

Choice 5) Careful permutations of Gemini and MAP
cards with a suitable choice of CP/M (Gemini or
MAP, depending upon the exact permutation) will
work but there seems no advantage in opting for a



80 Bus News 13

permutation unless there is some already existing
reason for making this sort of hybrid.

The choices are more more limited than they were
{no 35/40 track drive options for instance} but still
allow the same degree of system flexibility. CP/M
means that there is acres of software available
{both proprietory new stuff at high prices and the
Curates Egg which can be aquired from all sorts of
places (CP/M User Group et al) at very modest
prices).

So an upgraded Nascom is still avery much viable
proposition, what you end up with might appear a
bit odd (no flashy box) but still good value for
money, despite the exhortations from the various
big manufacturers to buy 16 bit machines. To me
there seems little point in ditching the dear old Z80
based systems as the availability and cost of good
16 bit software is not justified for home use and still
very expensive for business use. There is very little
in the way of all the useful utilities which are
available for CP/M 80 (as opposed to CP/M 86 or
MSDOS). Anyway, most of the currently available
16 bit software seems to extremely wasteful of
RAM space and very very slow when compared to
its 8 bit equivalent. So much for the increased
crunching power of 16 bit processors, not many of
the proprietory software sources seem to be
interested in using it.

Little tip for PRETZEL 2 users.

Rudd Thornton of Largs writes “Having saved
Prestel pages with PRETZEL 2 how to get them
printed as PRETZEL 2 saves the PRESTEL screen
image which only contains carriage returns, not
CR/LF's? The answer is WORDSTAR.

Load up >HS FUN.PGE <
Find and replace Q4
What? P e e

{Two returns; ''P <! is
the WORDSTAR overtype or CR
without LF = 0dh}

With? N«
(Hard carriage return = Odh,Oah)
Options? GN &

{Globally, no questions asked)

The new FUN.PGE will print correctly with PIP or
under WS.

This is a simple little tweak and will work with
wordy pages (but of course no graphics}). PRETZEL
2 now has a graphics printer option for those
interested, which will work with any Epson compat-
ible printer, it costs £11.50 from Henry’s.

The Gateway

Peter Curtis, the man who wrote the original
NASPEN, GEMPEN and DISKPEN text processors
has recently ‘finished’ his latest creation called

‘Gateway’ with its companion program ‘Pathway’.
| say ‘finished’ as it has been released on an
unsuspecting public in it's current form to see what
reaction it creates. There's bound to be some user
feedback and he hopes to produce a final version
soon {with free updates to those who bought the
earlier versions). Unlike Peter's earlier programs
this program is not based on a simple idea, rather
it is an attempt to make a simple job of an
extremely complex idea. In the main it succeeds.
Gateway is not system dependent, it will work on
any CP/M 80 machine.

The basic idea of Gateway is to allow you to tag
acres of text, turning it into a database without the
limitation of fields or other boundaries. Searches
take place over lines, paragraphs or the chapters or
even the whole file, with the ability to work within
user inserted boundaries in the form of default keys
inserted into the text. The tagging can be automatic
or stop for user intervention, and the tagging may
take place using logical operators, AND, OR or NOT
or on straight searches. This allows relational
searching to be achieved, cross referencing things
within the text. When | say text, Gateway can
handle diskfuls of text at once, across large
numbers of files. So a Winnie full of technical
instruction manuals is not outside its scope.

During the search and tagging process, Gateway
builds up its own “tag” and ‘directory’ files telling it
where it found what it was looking for. These are
then used to sort and extract data as required,
shifting the text into different orders, taking related
extracts, merging bits from different files into one,
and so on. The original text files remain untouched.

The Gateway defaults {and any changes to the
defaults) are stored in a small file which Gateway
constructs for itself called a XXX.LNK file. These
defaults allow the user to swop jobs or to leave the
system and then pick up work at the point where it
was left. XXX.LNK files are constructed for each
job, along with the “tag’ and ‘directory’ files for the
job in hand. So different work can be carried out on
the same text if desired.

Gateway itself is not too difficult to drive, it has a
very informative ‘Help’ facility which is a Gateway
cross-referenced file itself. This is coupled with an
intelligent auto prompt, which prompts in full for
inexperienced users or omits the prompt options
for the more experienced. The intelligent bit is that
the prompt selects the next most likely command
within the context of what the program was doing.
In most cases a series of returns is all that is
required to drive it. Of course you can break out of
the automatic sequence at any time, simply by
entering a new command instead of accepting the
command offered. Most command inputs occur at
the bottom of the screen, the remainder of the
screen being used for text display. When Gateway
finds what it's looking for, the text is displayed with



14 80 Bus News

the relevant part highlighted in inverse video. Little
concession is made to the cleverness of the Gemini
screen addressing, as the program is intended for
use with CP/M machines in general. To this end the
screen is treated in the simplest fashion consistent
with tidiness and readability.

'm slowly working through all the 80-BUS stuff I've
got on disk, so next time, instead of my saying ‘|
think it was written up somewhere’ l'll be able to
say exactly what, when and where! That's some
1.8M bytes on three disks covering about 100 files.
Mind you, it'll take some time, as | have to decide
the search criteria and introduce the search keys as
required. A further problem is that | don’t have all
of the past 80-BUSes, only the parts I've written or
edited, Paul has the rest, if he hasn’t reformatted
and re-used the disks.

The problem is what to make Gateway look for! As,
for instance, in the case of letters files, Gateway
doesn’t know that CEGB and electricity are related
until you do a cross search for either or both. This
problem is eased a little within Gateway by an
option which says ‘ignore’ case, so ‘Central
Electricity Generating Board’ and the word ‘ELECT-
RICITY' could be tied up without further inter-
vention. But you still have to know what way you
want the data presented and how to find it in the
first place. In some ways Gateway could be likened
to the early days of the laser, a solution looking for
a problem. It needs imagination to figure out what
you want Gateway to do, once you've decided,
Gateway can do it.

The Pathway

The companion program to Gateway, Pathway, is
something else. Parts of it have immediate uses.
Now most of you will be aware that not all text
processors write straight ASCHl text to a file.
WORDSTAR for instance riddles the text with ‘bit 7*
set and uses only line feeds instead of CR/LF's
within paragraphs. If you use the CP/M ‘TYPE'
command {without CCPZ} on a piece of WORD-
STAR text, you'll see what | mean. Other text
processors leave text controls lying about to a
greater or lesser extent.

Gateway will handle text from any source, but
merging different bits of text from different
processors leaves a problem for the text processor
ultimately used to edit the result. Ideally Gateway
would like standard ASCH text, or at least, all the
same type of text, but conversion from one source
to another is a bit of a pain. CONVERT, part of
Pathway does just that. It has three tables, the input
conversion table, the output conversion table and
a video conversion table. Lach table consists of 256
comparison strings. The data is read from an input
file and all incoming characters are compared with
the input table and are either left unchanged,
converted to another character or converted to an

n-length string. The idea is to convert all input to a
given standard, say ASCII. Likewise, on the way out
to the output file, all characters are compared with
the output table and similar conversions can take
place. A third table may be used for the output to
convert video control strings which might be used
for special functions on some video terminals or
printers.

The main purpose of Pathway is to format and print
text without the intervention of a text processor.
The text would (normally} come from Gateway
output files, but any text may be used. The input
and output conversion tables used by CONVERT
can be invoked, so special print controls may be
inserted as required. Pathway also accepts an
extensive set of ‘dot’ commands within the text,
akin to WORDSTAR, for such things as line length,
page length, headings, footings, margins and
many more. Unfortunately these commands are
not exactly compatible with those used by WORD-
STAR. The net result is neatly formatted text, to suit
the printer in use from any old source file
regardless of the original format.

Gateway and Pathway are all clever stuff, and
represent a different and very efficient way of
dealing with large amounts of text identification
and retrieval. | suppose it would really come into its
own for use with disk versions of the Encyclopaedia
Brittanica or for cataloguing libraries or some such.
Using it to cross index my letters files and on my
bits of 80-BUS text seems a trivial occupation for a
program of the obvious power of Gateway. | feel a
little intimidated by the concept of the program.
Perhaps | feel inadequate because | can't think of a
really good job for it to get to grips with. | like it, |
use it (it's not difficult), | just find it difficult to
enthuse over it.

Private Advertisements
Items Wanted

RAM A board or basic Nascom 2 system; RAM B
considered. Eric Wright, Newcastle 091 285 3762,

Cheap Nascom 2, preferably without PSU, key-
board or memory. Condition not important provid-
ed it hasn't been jumped on or excessively
butchered, and has most or all of its ICs. Tel: Dr P
D Coker, {(Orpington, Kent.) 0689 58510.



80 Bus News 15

Index file loader for Dbase M-80 17 May 1985 21:53 PAGE 1
Title Index file loader for Dbase

.z80
0000* aseg

; CP/¥ equates

0005 bdos equ 0005h
0080 dma equ 0080h
000F opnfil equ 15
0010 cisfil equ 16
0011 srchfst equ 17
0012 - srchnxt equ 18
0013 delfil equ 19
0014 rdfil  equ 20
0015 wrfil equ 21
0016 makfil equ 22
0014 setdma equ 26
org 100h

.phase 0c000h

Co00 C3 coda ip start

; Workspace
€003 dstdrv: defs 1 : Destination drive nanme

; Source fcb .

004 fecbl: defs 1 ; Source drive name ..
€005 fchbla: defs 11 ;.. file name mask ..
€010 fcblb: defs 23 ;.. rest of source fcb
027 fcb2:  defs 35 ; Destination fcb

; Find the files to copy

C04A 11 0080 start: 1d de,dma . Set the DMA address
C04D OE 1A 1d ¢,setdma

CO4F CD 0005 call bdos

€052 CD Coco call clr

€055 11 €004 1d de, febl . Search for first
€058 0E 11 1d ¢,srchfst

C05A CD 0005 call bdos

05D FE FF cp 0ffh : Quit if not found
COSF 8 ret z

€060 CD COB3 call loc ; Put it in save
€063 11 C10D 1d de, save

€066 01 000B 1d be, 11

C069 ED BO ldir

C06B8 D& push de

cosc 11 €004 srch: 14 de, fcbl ; Search for nexti
CO6F 0E 12 1d ¢,srchnxt

Co71 CD 0005 call bdos

€074 FE FF cp 0ffh ; No more ¢

076 28 0C ir z,schdon

€78 CD COB3 call loc ; Put it in save

CO7B D1 pop de



16 80 Bus News

Index file loader for Dbase N-80 17 May 1985 21:53 PAGE 1-1

coe
COTR
cosl
co82

€084
co85
coss

cos7
C08A

cosB
COBE
cosl
€094
€095
€096
coe7
cos8
C094
CooD
C0AO

COA3
CoAB
€049
CoAB
COAC
COAF

COB1
coB2

COB3
C0B4
CoBS
coBg
coB7
COB8
COBA
CoBB
COBE
COBF

coco
coclL
C0C3
Coce
cocr
cocs
coca

01 000B 1d be,11

ED BO ldir

D& push de

18 E8 jr srch

D1 schdon: pop de ; Mark the end of the list
AF xor a

12 id (de).a

; Now copy out the files

21 C10D 1d hl,save ; Point to the list

ES push  hl :

CD CoCo copylp: call clr ; Clear the fcbs

34 C003 1d .a,{dstdrv) -; Copy dest. drive to fcb2
32 co7 1d {fcb2),a

El pop hl

ES push hi

TE 14 a, (hl) ; Test for all done

B7 or a

28 17 ir z,copydn

11 €605 1d de, fcbl+l ; Copy the name to fobl
01 000B 1d be,11

ED BO ldir

El pop hl ; Copy the name to fcb2
11 C0o28 1d de, fch2+l

01 000B 1d be,11

ED BO ldir

ES push hl ; Save the list pointer
€D COCB call  copy

18 DA jr copylp

; All done, so go home

El copydn: pop hl ; Clear the stack ..

c9 ret ; .. and go home
; Subroutines
; Locate file in directory list

87 loc: add a,a

87 add a,a

87 add a,a

87 add a,a

87 add a,a

26 00 1d h,0

6F 1d l,a

11 0081 1d de,dma+l

19 add hl,de

cs ret

; Clear out fcbl and fob2

AF clr: Xor a

06 34 14 b,start-fcblb
21 010 1d hl, feblb

77 cirl: 1d {hl}.,a

23 inc hl

10 FC djnz cirl

C9 ret



g™ gy

80 Bus News

17

Index file loader for

Dbase ¥-80

17 May 1985

. Copy the named file

21:53 PAGE 1-2

CoCB 11 €627 copy: 1d de, fcb2 ; See if destination ..
COCE QOE OF 1d ¢,opnfil ;.. file already exists ..
CODO CD 0005 call bdos
CoD3 FE FF op 0ffh
CoD5 28 08 jr z,copyl
cop7 11 ¢o27 1d de, fcb2 . if so, delete it
GODA 0E 13 1d ¢,delfil
CoDC CD 0005 call bdos
CODF 11 ¢027 copyl: 1d de, feb2 ; Now make the destination file
COE2 0E 16 1d ¢, makfil
COE4 CD 0005 call bdos
COE7 11 Co04 1d de, fcbl ; Open the source file
COEA 0E OF 1d ¢,opnfil
COEC CD 0005 call bdos
; The copy loop
COEF 11 €004 copy2: 1d de, febl ; Read block into dma
COF2 0E 14 1d ¢, rdfil
COF4 CD 0005 call bdos
COF7 B7 or a ; Test for end
COF8 20 0A jr nz, copy3
COFA 11 co27 1d de, fcb2 ; Write out the buffer
COFD 0E 15 1d ¢,wrfil
COFF CD 0005 call bdos
C102 18 EB jr copy2
C104 11 co27 copy3: 1ld de, fcb2 ; File end, so close it
C107 0E 10 1d ¢,clsfil
C109 CD 0005 call bdos
C10C c9 ret
; Workspace for file names list
C10b save: end
Index file loader for Dbase M-80 17 May 1985 21:53 PAGE S
Macros:
Symbols:
0005 BDOS coco CLR coce CLR1
0010 CLSFIL COCB COPY CODF CoPY1
COEF COPY2 cl04 COPY3 COB1 COPYDN
€08B COPYLP 0013 DELFIL 0080 DMA
C003 DSTDRV 004 FCB1 €005 FCBlA
€010 FCB1B co27 FCB2 COB3 LoC
0016 MAKFIL 000F OPNFIL 0014 RDFIL
Clop SAVE €084 SCHDON 0014 SETDMA
co6C SRCH 0011 SRCHFST 0012 SRCHNXT
044 START 0015 WRFIL

No Fatal error{s)
* Routine to move index files

SET CALL TO 49152

@ 18,0 SAY "Copying indexes to the M: drive, please wait.”



18 80 Bus News

% Poke in the machine code
POKE 49152,195,74,192
POKE 49226,17,128,0,14,26,205

POKE 49232,5,0,205,192,192,17,4,192,14,17,205,5,0,254, 255,200

POKE 49248,205,179,192,17,13,193,1,11,0,237,176,213,17,4,192, 14

POKE 49264, 18,205,5,0,254,255,40,12,205,179,192,209,1,11,0,237

POKE 49280,176,213,24,232,209,175,18,33,13,193,229,205,192,192,58,3

POKE 49296,192,50,39,192,225,229,126,183,40,23,17,5,192,1,11,0

POKE 49312,237,176,225,17,40,192,1,11,0,237,176,229,205,203, 192,24
POKE 49328,218,225,201,135,135,135,135,135,38,0,111,17,129,0,25,201
POKE 49344,175,6,58,33,16,192,119,35,16,252,201,17,39,192,14,15

POKE 49360,205,5,0,254,255,40,8,17,39,192,14,19,205,5,0,17
POKE 49376,39,192,14,22,205,5,0,17,4,192,14,15,205,5,0,17
POKE 49392,4,192,14,20,205,5,0,183,32,10,17,39,192,14,21,205

POKE 49408,5,0,24,235,17,39,192,14,16,205,5,0,201

* Set up the destination, source and file mask string

* {In this case, to M: drive, from B: drive, all files like ST-% NDX.}

% Poke the files string into the fcb
STORE 1 TO ¢
D0 WHILE c<=12
POKE 49154+c,RANK{$(files,c,1})
STORE c+1 TO ¢
ENDDO

* Now do it.
CALL

Private Advertisements

Items For Sale

Nascom 1 in Vero frame, 10A PSU, V&T Superdeck,
64k RAM B, fully populated /O board, Sound
board, EPROM programmer/eraser, 2 EPROM
boards containing extended Nas-Sys 3, Crystal
BASIC 2.2, Hi-Soft PASCAL 3, Editor/Assembler
and cassette operating system. Documentation and
some source listings. Only £320; with GP80A
Printer, £400 ono. Also a 3A PSU for £20. RAM A
board {no RAM) for £15. High speed tape interface
£5. Please contact Mr M Parker, Botley, Oxford,
0865 725495 evenings/weekends.

Nascom 2 Computer, Gemini GM802 Memory
Board {16K), GM807 3A PSU, all encased in a small
bureau complete with 20" B&W TV and cassette
recorder. £125.00. Tel: E W Hair, 01 578 5423.

2-off 16K Nascom 2 computers about £200 each.
One has EPROM burner and Zeap. 1-off 48K
Nascom 3 computer about £400. Also has Zeap and
word-processing program. Also for sale are 3-off
B/W Monitors and 3-off Decwrite type Printers. Any
reasonable offer accepted. Some items need
attention. Potential owners must see goods first
and collect. Pay cash. Contact Mr Parsons, Worth
School, Turners Hill, CRAWLEY, Sussex, or ring
Copthorne 714821 after 10.00 pm.

Nascom 3 Microcomputer; 48K memory — NAS-
PEN included. Offers around £250. Telephone
Joseph Townsend, 023 063 8886.

GMB803 EPROM card with manuals for £30. Tele-
phone: Tom Gibson, Middlesbrough 0642 452775
{evenings or weekends).

Two Gemini GM803 EPROM boards, one fully
populated with 16 x 2716 EPROMs containing
MBASIC and GBASIC, and with 1 x 2764 (in
MK36000 socket) containing GemZap. The other
board is partly populated with 6 x 2716 EPROMs
containing GemDebug and GemPen. Prices £100
and £90 (ONO) respectively. Contact Martin Davies,
0684 72178.

EPROM Programmer, {..0. Systems type), 2708 to
2732. Self-contained power supplies. Software on
tape or PolyDos format disk. I'm upgrading to
Gemini GM860. £35 ... Tel: John 0357 21672.

Compac 3 for Gemini QDSS at £175. Rights to be
transferred as per licensing agreement. Tel: Mr P
Young, Belfast, 0232 790508




80 Bus News

19

QUANTUM
COMPUTER
> SYSTEMS LTD

Springfield Road Chesham Bucks HPS 1PU
Telephone (0494) 771987 Telex 837788

TURBO PASCAL V3

% Absolute address variables * Overlay system

%* Bit/byte manipulation % Program chaining with common variables
* Direct access to CPU memory & data ports * Random access data files

* Dynamic strings #* Structured constants

* Free ordering of sections within declaration part * Type conversion functions

* Full support of CP/M facilites * Wordstar type editor

* In-line machine code generation * Twice as fast as TURBO V2

* Include files * One step compile

* *

Logical Operations on integers Installed for Gemini IVC/SVC

WHAT THE CRITICS SAY

PC MAGAZINE "Language deal of the century...TURBO PASCAL, It introduces a new programming
enviroment and runs like magic."”

POPULAR COMPUTING "Most Pascal compilers barely fit on a disk, but TURBO PASCAL packs an Editor,
Compiler, Linker, and Run time library into just 29k Bytes of RAM."

BYTE "What I think the computer industry is headed for: Well documented, standard,
plenty of good features, & a reasonable price."”

TURBO PASCAL IS AVAILIABLE NOW TURBO PASCAL V.3  CP/M 80 69.95
"

GIVE YOUR SYSTEM A TURBO BOOST " " CP/M 86 102.95
TURBO 8087 version CP/M 86 109.95

TURBO TOOLBOX

Designed to compliment the power and speed of Turbo Pascal, TURBO TOOLBOX consists of three
modules created to save you from "rewriting the wheel™ syndrome.

TURBOISAM Files using B+ Trees

Makes it possible to access records in a file using keys (e.g. "Smith" or "Rear Bumper') instead
of just a number. Even though you have direct access to individual records in the file you also
have easy access to the records in a sorted sequence, A must if you plan to work with direct
access files. Source code is included in the manual.

QUICKSORT ON DISK .
The fastest way to sort your arrays. Preferred by knowledgeable programmers. Available for you

now with commented source code.

GINST (General Installation Program)
Now...the programs you write with Turbo Pascal can have a terminal installation mode just like
Turbo”s!. Saves hours of work and research, and adds tremendous value to everything you write.

TURBO TOOLBOX 54.95
TURBO TUTOR

Don’t know Pascall.... Let Turbo Tutor teach you. Supplied as a disk of demonstration programs
and a very informative and entertaining manual this package will show you how to use your Turbo

Pascal to best advantage.
TURBO TUTOR 34.95

All disks supplied in Gemini QD-96tpi format as standard, please state your format if different.
All Prices are exclusive of Vat (15%) and Carriage & Packing 1.50. Personal Callers by
appointment Only.



20 80 Bus News

CONDITIONAL SUBMIT FILES
By Steve Wilimott

The CP/M SUBMIT facility is much like an element-
ary Job Control Language. The public domain
EXSUB facility is very similar. They both support a
job submission with parameters which enable
repetitive jobs like the development cycle edit,
compile, link and run to be conveniently defined
and then used generally. When submitted only the
command file and the parameters which define this
job (e.g. the source file to be compiled) need be
supplied. A typical exampile file called MAC.SUB is:

ED $1.MAC

M80 =§1

L80 /P:100,81,LIBRARY/S, §1/N/E
$1

and invoked in response to the CCP prompt to
develop the program DEMO.MAC by

SUBMIT MAC DEMO

The SUBMIT utility processes the MAC.SUB file
substituting the parameter string ‘DEMO’ in place
of the place holder $1. It creates a new file called
$$%.SUB with one command line in each 128 byte
record in the reverse order. Whenever the CCP runs
it looks for this file on disk and reads the last record
into the command area below address 0100 hex,
removes the last record from the file $$$.SUB and
obeys the installed command as if it had been
entered manually. If the CCP finds the file $$3$.SUB
empty then it deletes the file from disk thereby
ending the job.

However, there is at least one annoying deficiency
in CP/M in this area and that is that the only way to
stop a submit file is to hit the keyboard while the
CCP is reading the next command from disk. CP/M
provides no means of any of the transient prog-
rams run in the TPA to return a success or failure
indication such that the CCP could pick up this
status and automatically abort the submit file. If the
LIBRARY.REL file used above is large it can take
minutes to perform the linkage to produce the
DEMO.COM object file. When the compile fails and
the linker is entered one is tempted to hit the
keyboard very hard, particularly if it is a small
syntax error and a long wait for the linker to
complete. It seems unsatisfying to just hit the
restart button. ,

Most decently designed programs output a report
on how well it has run. Perhaps unsurprisingly the
report is left on the screen for the user to see. Each
program normally generates this report in a fairly
fixed format. A compiler will state how many errors

or warnings have or have not been found. With a
Gemini IVC or SVC video board (or indeed a
NASCOM with memory mapped display or |
assume an AVC or whatever) one is able to read
back from the display and analyse this report. The
result of the analysis could cause the abortion of
the submit file. This is what the CHECK utility does
when it is run as part of a submit file. The program
has been written for the IVC or SVC, but since the
M80 source for CHECK is listed here it should not
be too difficult to modify for other systems. A
typical use would be in the submit file MAC.SUB:

ED $1.MAC.

N80 =§

CHECK 'NO FATAL ERROR(S)'/CU

L80 /P:100,$1,LIBRARY/S, $1/N/E »
$1

The command syntax for CHECK is:
CHECK 'string'/switches

The supplied string is compared to a previous line
on the display according to the optional switches.
If the check is successful CHECK merely exits back
to the CCP and the submit file continues. If the
check fails then CHECK prompts for abortion of the
submission. If the answer is Yes the executing
submit file '$$$.SUB’ is deleted from the disk,
thereby aborting the submit file. If the answer is No
CHECK returns to the CCP and everything carries
on as normal.

One can experiment with CHECK by using the
screen edit facilities provided by the BIOS. How-
ever, the following provides some of the rationale
behind the program design. The supplied string
must be in single quotes, because since the
/switches are optional one cannot supply a string
of spaces or a null string — the CCP will not see
them. The '/ separator before the switches merely
conforms to common syntax. The switches all have
defaults which allow them to be optional. They can
be supplied in any order. Some of the switches
have been built in to increase the pattern matching
ability of the utility. Considering each switch in
turn:

B indicates that previous blank lines are signif-
icant and modifies the effect of the L switch.
The default is to ignore blank lines.

C indicates that the supplied string must match
the complete displayed line. The example
above means that warnings from the M80
assembler will be trapped as the warning
report follows the fatal error report on the
same line. The default is to allow a match
anywhere in, the line.

F indicates that the string must match the finish
of the displayed line. The default is a match



80 Bus News 21

anywhere in the line. This switch will be
overridden by a C switch setting.

Ldd indicates that the displayed line to be checked
is the dd'th previous to the CHECK command
line. An error is reported if this line is up off
the screen. The B switch affects the line
counting. The default value is one ie. the
previous line on display.

N indicates that the presence of the supplied
string prompts for abortion of the submiss-
ion. The default condition is that a matching
string according to the other switches indic-
ates that the submit file should continue.

S indicates that the string must match the start
of the displayed line. The default is a match
anywhere in the line. This switch will be
overridden by an F switch setting.

U indicates that the displayed line should be
converted to upper case before comparison
with the supplied string. This is normally
necessary as the CCP capitalises the com-
mand when it is put into the command area.
No capitalisation is an option under CCPZ —
the public domain rewrite of CCP for the Z80.
The default option is no case conversion.

W  indicates that a ‘?’ in the supplied string is
wild ie. as with the CP/M ambiguous file
name convention ‘?” will match any character
in the displayed line. The default is that ‘7’
treated as a normal character.

I hope that readers of the 80-BUS News find this
short article interesting and the supplied program
useful.

Private Advertisements

ltems For Sale

Nascom 2 with CP/M and Nas-Dos, MAP 80 RAM
card (full 256K), Nascom AVC with CP/M and
Nas-Dos software, Nascom FDC, one SSDD disk
drive in twin drive box and PSU, Gemini 5A PSU
and 8 slot backplane in rack frame. Gemini EPROM
board with all the usual firmware, Bits and PC’'s
EPROM programmer — lots of spare 2708's and
2716's, PAL encoder card (needs attention). Nas-
com 1 with 32K RAM A card and BASIC ROM,
Cottis-Blandford interface, 3A PSU (needs attent-
ion}). Lots of disk and tape software and all the
manuals. Offers for whole or parts to: Dr David
Plews, Tel. Steeton 0535 52511 (day), 0535 54157
{evening).

TITLE  CHECK SUBMIT
. 280
.COMMENT !

CHECK 'string'/switches

This utility is run as pari of a submit file. It g
checks a previous line on display against the supplied
string. If this string matches the displayed line
according to the switches the submit continues,
otherwise it can be aboried after a prompt.

The optional switches are:

B causes blank lines to be counted with the L
switch, defaults to ignore blank lines,

C the string matches the full displayed line,
defaults to only part,

F the string matches finish of displayed line,
defaults to anywhere,

Ldd causes the dd'th previous line to be compared
with the string, defaults to one,

N the string must not be in the displayed line,
defaults to contained,

S the string matches start of displayed line,
defaults to anywhere,

U the displayed line is converted to uppercase
before comparison, defaults to no case change,

W indicates that '?' in the supplied string are
wild cards, defaults to ordinary '¢' for matching,

Switch C overrides F which overrides S.

It is intended to trap compiler error summaries etc
and stop the continuation of the submit file. 4n
example submit file is:

ED $1.MAC

M80 =§1

CHECK 'NO FATAL ERROR(S)'/CU
L8¢ /P:100,81,81/N/E

$1

S C Willmott 26 April 1985

DEBUG EQU ¢

VCDATA EQU OBIH  ;VIDEO CARD DATA PORT
VCSTAT EQU OB2H  :VIDEO CARD STATUS PORT

NSWICH EQU ¢ :MUST BE LS BIT
BSWICH EQU 1
CSWICH EQU 2
FSWTCH EQU 3
SSWICH EQU 4
USWTCH EQU 5
WSWTCH EQU 6



22 80 Bus News
WBOOT EQU © CHKSW: INC HL ;CHECK EACH SWITCH
FDOS EQU 5 LD A, (HL)
FCB EQU  5CH ¢cp B
CBUFF EQU 80H JR  NZ,CHKC
SET BSWICH, (IX)  ;SET COUNT BLANK LINES
RCONF  EQU 1 JR  NXTSH
WCONBF EQU 9 CHKC: CP ‘G
DELF  EQU 19 JR  NZ,CHKF
SET CSWTCH, (IX)  ;SET COMPLETE LINE
BEL EQU  O7TH JR  NXTSH
LF EQU OAH CHKF: CP 'F'
CR EQU  ODH JR  NZ,CHKL
ES EQU  1BH SET FSWICH, (IX) ;SET FINISH OF LINE
WILD EQU 9 JR  NXTSH
CHKL: CP 'L
LD  (STK),SP :SAVE CCP STACK POINTER JR  NZ,CHKN
b SP,STK :SET UP STACK LD AB ;CHECK NO CHARS LEFT IN COMMAND LINE
X0R 4 :INITIALISE SWITCHES P 3 ,
LD IX,SWICH JP  C,REPORT ;IF NOT ENOUGH FOR Ldd -
LD (IX),A CALL DIGIT ;PICK UP MS DIGIT
ING A :SET DEFAULT L SWITCH LINE NO b C.A 0= A% 10
LD (LIN),A ADD A,A
CALL GETCUR ;GET CURRENT POSITION OF CURSOR ADD A.A
LD  (CURPOS),HL  ;AND SAVE IT ADD A,C
LD  DE,CMDFAL :CHECK THAT A STRING HAS BEEN ADD A,A
LD  HL,CBUFF :  SUPPLIED LD C.A
LD B, {HL) :NO. CHARS IN COMMAND LINE CALL DIGIT :PICK UP LS DIGIT
LD AB ADD A,C :ADD IN MS DIGIT
P2 :AT LEAST THE SEPARATING SPACE AND ' LD (LIN},A ;STORE LINE COUNT
JP  C,REPORT ;IF TOO SHORT A STRING SUPPLIED JR  NXTSW
ING HL CHKN: CP 'N'
ING HL JR  NZ,CHES
LD A, (HL) SET NSWTCH, (IX)  ;SET NOT CONTAINED IN
cp JR  NXTSW
JP  NZ,REPORT :IF NO LEADING ' CHKS: CP 'S
b L,B :PICK UP LAST CHAR IN COMMAND LINE JR  NZ,CHKU
LD H0 SET SSWTCH,(IXJ ;SET START OF LINE
LD  BC,CBUFF JR  NXTSW :
ADD HL,BC CHKU: CP 'U
CHKSTR: LD A, (HL}  :SEARCH BACK FOR TRAILING ' JR  NZ,CHKW
DEC HL SET USWICH, (IX) ;SET CONVERT TO UPPER CASE
gcp e JR  NXTSW
JR  NZ,CHKSTR JIF NOT ' CHKW: CP 'W'
INC HL ’ JP NZ,REPORT
LD AL ;CALCULATE LENGTH OF STRING SET WSWICH,(IX) ;SET ? AS WILD CARD
SUB CBUFF+3 NXTSW: DJNZ CHKSK  :IF MORE SWITCHES
JP C,REPORT ;IF NO TRAILING ° RUN: LD HL,(CURPOS) ;CURSOR POSITION
LD (STRLEN),A  ;AND SAVE FOR MATCH COUNT DEC L :START FROM COMMAND LINE
LD A, (CBUFF} ;CHECK SWITCHES BACK: DEC L :BACK A LINE
ADD 4, CBUFF JP P CHEK :IF NOT OFF TOP OF SCREEN
SUB L LD HL,(CURPOS) ;RESTORE CURSOR TO ORIGINAL POSN
JR  Z,RUN :IF NO SWITCHES SUPPLIED CALL PUTCUR
P 2 LD  DE,TCPFAL
JP C,REPORT :IF COMMAND TOO SHORT JP  REPORT
D B.A ;SAVE NO. SWITCHES + 1 CHEK: CALL PUTCUR  ;ELSE POSITION CURSOR
INC HL :PICK UP SWITCH SEPARATOR CALL GETLIN ;GET LINE FROM SVC
LD A, (HL) BIT BSWTCH,(IX) :CHECK COUNT BLANK LINE SWITCH
P JR  NZ,CLIN :IF YES COUNT LINE
JP  NZ,REPORT :IF NOT / LD AC :CHECK LENGTH OF LINE
DEC B :NO. OF SWITCHES OR A

JR

Z,BACK

;IF EMPTY LINE



80 Bus News 23

CHKFIN:

CLIN: LD A, (LIN)

DEC A

LD (LIN),A

JR  NZ,BACK

PUSH BC

LD HL, (CURPOS)

CALL PUTCUR

POP BC

LD  DE,LINE

LD  HL,CBUFF+3

LD A, (STRLEN)

LD B.A

R €

JP Z,MATCH

BIT CSWICH, (IX)

JR  Z,CHKFIN

LD AB

Y

JR  NZ,NOMTCH

JR  PRECMP

JR  Z,PRECMP

LD AC

P B

JR  C,NOMTCH

EX DEHL

PUSH BC

LD B,

ADD HL,BC

POP BC

b C.B

LD B0

OR &

SBC HL,BC

LD B.C

EX DE,HL
PRECMP: INC C
BEGCMP: PUSH BC

PUSH DE

PUSH HL
COMP: DEC C

JR  Z,NOMTCH

BIT WSWICH, (IX)

JR  Z,CHKUP

LD A, (HL)

CP WILD

JR Z,SKPCHP

CHKUP: BIT USWTCH, (IX)

JR NZ,USHIFT
LD A, (DE)
JR  DOCOMP

USHIFT: LD A, (DE)

CP ‘'a’

JR  C,DOCoMP
CP 'z'+l

JR NC,DOCOMP
SUB 20H

DOCOMP: IF DEBUG

PUSH AF
CALL PVID
LD A, (HL)

;COUNT LINE BACK

; IF REACHED LINE

;SAVE LINE LENGTH

;RESTORE CURSOR TO ORIG POSK

;RESTORE LINE LENGTH

;DE = @ DISPLAYED STRING

; IGNORE INITIAL SPACE & LEADING '
;B = NO. CHARS IN STRING

;IF NULL STRING AND BLANK LINE

;CHECK COMPLETE LINE SWITCH
;IF NOT SET, ANY MATCH

;COMPARE LENGTHS

;IF DIFFERENT LENGTHS

BIT FSWICH, (IX) ;CHECK FINISH OF LINE SWITCH

;IF NOT SET

;IF DISPLAYED LINE TOO SHORT

[ ;=@ LINE + {C} - (B), SAVE HL
;SAVE CHAR COUNTS

;RESTORE CHAR COUNTS
;MUST COMPARE SAME NO. CHARS AS STRING

;DE =@ OF END OF STRING, RESTORE HL
; C=COUNT CHARS IN DISPLAYED STRING+1

;SAVE START OF COMPARISON

; COUNT DISPLAYED CHARS TO BE COMPARED+1

;IF DISPLAYED LINE TOO SHORT
;CHECK FOR WILD CARDS

; IF NOT SET

;CHECK FOR WILD CARD IN STRING

;IF WILD CARD SKIP COMPARISON
;CHECK CASE SHIFT SWITCH
;IF CONVERT TO UPPER CASE
;PICK UP DISPLAYED CHAR

;PICK UP DISPLAYED CHAR
;ENSURE UPPER CASE

;CONVERT TO UPPER CASE

;IF IN DEBUG MODE

;SAVE LINE CHAR

;OUTPUT LINE CHAR

;AND STRING CHAR TO BE COMPARED

CHKNOT:

CALL PVID

POP AF

ENDIF

CP {HL}

JR  NZ,NXTCMP

SKPCMP: INC DE

NOMTCH: LD Al
LD HL,SWICH ;A := (A} XOR {NSWTCH)

X0R (HL)

AND 1

JR NZ,FAIL

LD  DE,OKMSG

JR  REPORT
FAIL: LD DE, PROMSG

CALL MSG

LD C,RCONF

CALL FDOS

AND ODFH

cp'y!

JR  Z,4BORT

cp N’

JR  NZ,FAIL

LD DE,CONMSG

JR  REPORT
ABORT: LD DE,SUBFCB

LD  C,DELF

CALL FDOS

LD  DE,DELFAL

INC &

JR  Z,REPORT

LD  DE, ABOMSG
REPORT: CALL MSG

IF  DEBUG

JP WBOOT

ELSE

LD SP,(STK)

RET

ENDIF

DIGIT: INC HL

LD A, (HL)
DEC B

CP '9'+1

JR  NC,REPORT
SUB 0!

JR  C,REPORT
RET

;RESTORE LINE CHAR

; COMPARE CHARS
;IF NO MATCH
;BUMP DISPLAYED STRING @

INC "HL ;BUMP CHECK STRING @&
DJNZ COMP ;IF MORE CHARS IN CHECK STRING
JR - MATCH ; STRING MATCHES
NXTCMP: BIT SSWICH, {IX) ;CHECK START OF LINE SWITCH
JR  NZ,NOMTCH ,IF YES THEN NO MATCH
POP HL ;RESTORE START OF COMPARISON
POP DE
POP BC
INC DE ;STEP TO NEXT CHAR ON DISPLAY START COMPARE
DEC € ;COUNT DISPLAYED CHARS FULLY CHECKED
JR  BEGCMP ;FOR NEXT ATTEMPT TO MATCH
MATCH: XOR A ;A = 0 FOR MATCH
JR CHENOT

;A =1 FOR NO MATCH

;IF SUBMIT DEEMED TO HAVE FAILED
;ELSE CONTINUE WITH SUBMIT

; PROMPT FOR ABORT

;READ CON:

;REMOVE CASE BIT

IF YES

;IF NEITHER Y OR N ENTERED

;STILL CARRY ON

;DELETE SUBMIT FILE

:IF SUEBMIT FILE NOT FOUND
ABORTED SUBMIT

:REPORT OUTCOME

;WARM BOOT

;RETURN TO CCP

;PICK UP DIGIT FROM COMMAND LINE
;COUNT CHAR
; IF NOT DECIMAL DIGIT

IF NOT DECIMAL DIGIT
;A = BINARY :



24 80 Bus News

GETLIN: LD 4A,'Z'

;GET LINE FROM VIDEO CARD

PROMSG: DEFB BEL,CR,LF,'CHECK fail — abort SUBMIT {Y/N)7 §'

CALL PVESC ;GET LINE COMMAND ABOMSG: DEFB CR,LF, 'SUBMIT aborted’,CR,LF,'§’
b C,0 ;C=COUNT .OF CHARS IN LINE CONMSG: DEFB CR,LF, 'CHECK overridden ~ continuing',CR,LF,'§'
LD DE,LINE ;DE = BUFFER @ OKMSG: DEFB 'CHECK okay - continuing',CR,LF,'$'
GTLIN: CALL GVID ;GET CHAR
CP (R SWICH: DEFS 1
RET 2 ;IF CR THEN END OF LINE LIN: DEFS 1
LD (DE},A ;ELSE STORE IN BUFFER STRLEN: DEFS. 1
INC DE ;BUMP BUFFER @ CURPOS: DEFS 2
INC C ;COUNT CHAR LINE: DEFS 80
JR  GTLIN ;FOR MORE DEFS 32

GETCUR: LD A,'?'

;HL := CURRENT CURSOR POSITION

STK: DEFS 2

NEW GEMINI BIOS

CALL PVESC ;GET CURSOR COMMAND END
CALL GVID ;GET ROW

LD L,A

CALL GVID ;GET COLUMN

LD H,A

CALL GVID ;GET CHAR

RET

PUTCUR: PUSH HL
LD BC,2020H
ADD HL,BC
LD A=
CALL PVESC
LD AL
CALL PVID
LD AH
CALL PVID
FOP HL
RET

PVESC: PUSH AF
LD AES
CALL PVID
POP AF

PVID: PUSH AF

PV0: IN A, (VCSTAT)
RRCA
JR C,PV0
POP AF

OUT (VCDATA},A
RET

GVID: IN A, (VCSTAT)

RLCA

JR C,GVID

IN A, {VCDATA)
RET

MSG: LD C,9
JP FDOS

;CURSOR POSITION := HL
;ADD OFFSET

;POSITION CURSOR COMMAND
;PUT ROW

; PUT COLUMN

;OUTPUT ESCAPE (A)

;OUTPUT (A} TO VIDEQ CARD

; INPUT A FROM VIDEQ CARD

; OUTPUT MESSAGE (DE}

Gemini have now released their new BIOS V3.2
incorprating many advanced features not
normally found in CP/M 80 systems., Features
include the ability to add different types of
disk drives including 3.5" and 8"; read and
write in twelve different disk formats; CCPZ
allowing 16 separate user areas per drive
with hierarchical search; Max of 5 logical
drives can be set up for floppy based systems
or 8 for Winchester based systems; support
for the GM833 ram disk or Gemini page mode
ram disk. For those lucky enough to own
Gemini winchester systems user definable
directory sizes are offered together with
support for two different system tracks.

Bios V3.2 is available as an upgrade for
those with an existing Gemini CP/M. We regret
that we are unable to supply this BIOS for
use with Nascom based systems.

To obtain your copy of Bios 3.2 send your
original Gemini Master CP/M disk together
with a cheque for 35.65 inc Vat & postage
to: “BIOS Upgrade”, QUANTUM COMPUTER SYSTEMS
LTD. Springfield Road,Chesham,Bucks, HP5 1PU.

SUBFCB: DEFB 0, '$%% SuB',0,0,0,0

CMDFAL: DEFB BEL, '9%7 Bad command: CHECK '‘string®’/switches',CR,LF
DEFB 'where optional /switches maybe B, €, F, Ldd, N, §, U and/or W'
DEFB CR,LF,'§’

TOPFAL: DEFB BEL, '??? No previous non-blank line',CR,LF,'§’

DELFAL: DEFB BEL,CR,LF,'?77 No SUBMIT file found',CR,LF,'§’



80 Bus News 25

Springfield Road Chesham Bucks HP5 1PU
SYSTEMS lTD Telephone (0494) 771987 Telex 837788

NOW AVAILABLE 3 NEW 80-BUS BOARDS

GMB70 MODEM BOARD

The Gemini GM870 Modem board is an
80-BUS board thus alleviating the
need for extra serial ports. The
board is compatible with any of
the Gemini CPU boards and is
designed around the AMD 7910. The
modem provides low speed data
communication based on CCITT
standards.(300/300 & 1200/75 baud)
The board has both auto-dial &
auto answer capability. Software
is provided with the modem on
disk. '

GM870 175.00

GMB63 STATIC RAM BOARD

The Gemini GM863 80~BUS Static RAM
boards are available in either 32k
or 64k versions. An on-board
rechargeable battery provides
memory content retention during
power~down pericods. The GM863
supports the Extended Addressing
mode when used with the GM813 CPU
board and may also be set to any
one of four pages of the Gemini
page mode system.

GM863-32 150.00

GM863~-64 215,00

GM853 EPROM BOARD

The Gemini GM853 “Bytewide” Eprom
board contains 8 sockets to accept
many different types of memory
devices, ranging from 64kbit (8k x
8) up to 512kbit {64k x 8). This
includes the standard 2764, 27128,
27256 & 27512 devices. The GM853
supports the Extended Addressing
mode when used with the GM813 CPU
board and may also be set to any
of the four pages of the Gemini
page mode system.

GM853 95.00

All Prices are exclusive of VAT currently 152 Carriage & Packing 2.50
Personal Callers by appointment Only.



26 80 Bus News

PRESTEL UPDATE
by Robin Luxford

A review of the Henelec Prestel Terminal program
and some installation notes on the GEC LTU-II kit.

Although the 300 BAUD Prestel service has been
accessible to CP/M 80-BUS computers for some
time (see 80-BUS NEWS Vol 2. iss 6.), the
appearance of the new Henelec PRETZEL 2 soft-
ware from Henry’s has made the 75/1200 BAUD
service readily available. Since the 300 BAUD ports
on the Prestel computers strip all the graphics
characters and replace them with asterisks, the
graphics are pretty dull. The full set of characters
and mosaics loaded into the Gemini SVC/IVC video
boards by PRETZEL 2 makes the display of pages
far more interesting and represent a fair com-
promise as the SVC/IVC can not reproduce colour.
PRETZEL 2 also reprograms the SVC/AVC to the
Prestel screen format of 40 columns by 24 lines,
making text and graphics appear in the correct
aspect ratio, a considerable improvement over the
normally cramped output of the 300 BAUD service
displayed using a normal terminal program.

PRETZEL 2 has facilities for saving and reloading
pages to and from disk (either on or off line), and
also for dumping the current screen image to
printer. The program contains a screen editor
allowing the user to alter and experiment with
pages without being connected to the Prestel
computer. On line the system works in the
approved Prestel full duplex mode where all
keyboard input except the program’s command
codes is echoed to the screen via the Prestel
computer. Off line all keyboard entry is direct.

My only criticisms of the software are the lack of a
directory facility, coupled with the fact that the
program stores the screen images individually
rather than in the form of a random access file. The
latter is wasteful of disk space as each image is
only 1K long but with a Gemini CP/M block size of
4K, three quarters of the space allocated is wasted.
The former is simply inconvenient as the number
of saved pages soon mounts up, and it is difficult
to remember what names have been used ormay
be deleted.

The program is written entirely in Z80 machine
code and is supplied on disk as a fully commented
Z80 source file suitable for the Microsoft M80
assembler. All documentation is supplied on the
disk along with some twenty demonstration pages.
The user has to patch the /O section to acc-
ommodate the modem used and select the various
options for Nascom/Gemini processor cards and
either SVC or IVC and then assemble the program
for use. One assembly option is to include the
users’ identity number and password which are

then sent automatically on log-on. Minor text
changes would make the source file suitable for
most other Z80 assemblers. Another advantage of
having the source file is that it is possible to patch
in any auto-dial facilities which the user may
require such as those described on page 22 of
80-BUS NEWS vol 2. iss 6.

Overall | have found PRETZEL 2 an excellent piece
of software particularly at the £30.00 charged for it.
The well chosen graphics more than make up for
lack of colour on the screen and-its storage and
printer facilities offer much more comprehensive
use of Prestel than an adaptor connected to a TV
set.

My modem is the 75/1200 BAUD modem available
as a surplus unit from the same source as the
program. The GEC LTU-11 modem was designed
for a GEC Prestel terminal, but slight hardware
modifications make it entirely suitable for use with
either Nascom or Gemini processors. The unit is
supplied in two parts, as a printed card about 6 x 4
inches, without circuit diagrams but with full
descriptive manual, and a sealed box containing
the auto-dial relays and isolation transformer,
measuring some 3 x 5 x 2 inches {(oddly enough the
isolation box is supplied with circuit diagrams but
no description). The modest power supplies are
derived from the computer. The modem card
expects TTL level inputs and outputs so a simple
interface is required to make it suitable for the
RS232 from either a Gemini or Nascom. Addition-
ally the data to and from the card is inverted so use
is made of a simple 74LS04 to buffer the data, and
provide the inversions.

Data out from the RS232 is clipped using two
resistors and zener diode to convert the + and - 12V
RS232 swing to a swing between 0 and 5 voits, this
is then inverted by one of the inverters in the
74L.S04. Data output from the modem is inverted
by another inverter in the 74LS04 and fed directly
to the RS232 input. Although this input is not at
RS232 levels, both the Gemnini and Nascom input
circuitry cope quite adequately. Dialing information
is taken from a port and fed directly to the
dialing/isolation box which requires TTL level
inputs. A word of ‘warning about the dialing/
isolation box. All inputs including the power supply
are protected by what appear to be fusible zener
diodes, which go short circuit if a voltage across
any line exceeds 6V. These devices, which are
probably included to protect the computer from
lightning strikes on the telephone line are, i) very
fast, and, ii} very unforgiving. So care is required to
ensure correct working voltages on the dialing/
isolation box.

The whole system works extremely well and
complements the PRETZEL 2 software nicely. As
the whole lot, modem and software cost less than
£60.00 and provided a couple of evenings enter-
tainment sorting it all out, | consider it money well
spent.




80 Bus News 27

Things your Mother never told you about M80 and L80

by D.W.Parkinson

Having looked at some of the comments on
returned 80-BUS questionnaires, this article will
please some readers, but irritate others. | trust that
those that don’t use CP/M-80 and Microsoft's M80
and L8O package will bear with me — after all this
article may prompt you to go back and read about
the more obscure features of your assembler/high
level language. The article assumes that the reader
has a reasonable working knowledge of M80 and
L80.

Microsoft's M80

First I'll start with Microsoft’s M80 macro assemb-
ler. (CAVEAT — The features exploited in these
examples are present in release 3.44 of the
assembler (09 Dec 1981) and do not necessarily
apply to earlier releases.)

M80 includes a pseudo-op — ‘.printx’ — that prints
a message on the system console whenever it is
encountered during an assembly. If you ever
assembile large files, then this can be used to keep
you informed of the progress of the assembly and
is a useful indicator that things are progressing as
they should. The syntax of the command is:

.printx <{marker>{text><{marker)>
e.g. .printx * I/0 section reached *

i.e. Following the ".printx’ command M80 takes the
first non-space (or non-tab) character that it finds,
and then sends that character and the following
text to the console. It stops when it sees the same
marker character again. | tend to use the ‘%’

~ character as my marker.

As well as indicating when certain ‘landmarks’ are
reached, it can be used to confirm that the
assembler is actually doing what you think it is
doing, and also that your assembled program
matches any particular system requirements. The
former obviously covers the case where an
assembler program utilizes the conditional assem-
bly feature of M80, and confirms that you have
your conditional flags set correctly. (if you have

_ several slightly different versions of a program to

match differing environments, then it is easier to
maintain one copy of the program than several.) In
the latter case, you may require a certain point of
your program to fall at a particular address. This
can be done with an ‘ORG’ statement, but you may
inadvertently add some extra code to the start of
the program some months later, forgetting that this
will cause one bit of code to overlay another later
on in the program!
e.g.

ifdef NASCOM ; If we have defined NASCOM version

.printx % NASCOM version %

else

.printx % GEMINI version *

endif

. ; End of section of code
ret

if §.GE.66h ; Check it ends before start of NMI routine

.printx % -+ error NMI routine clobbered +++++ *
endif
org 66h

; Start of NMI routine

Occasionally you may want to know the size of a
program — perhaps it has to fit within an EPROM.
In the past | used to enter a single line at the end of
the program consisting of the one word ‘error’. The
assembler always threw this out as an error, and
from the error message | could see the address that
the program had reached. With version 3.44 of M80
a much better way of achieving this effect appear-
ed. It makes use of the macro feature of M80
together with parameter substitution.

Suppose you are assembling a program and want
to know several things:
{i} The length of the code segment of
the program.
{ii) the length of the data segment of
the program.
(iii) the length of a particular routine
within the program. (Perhaps in some
circumstances it might have to be
overlayed by an alternative routine.}

There are two steps you have to take to achieve
this:
Step 1is to ensure that you have labels within
the program to which the assembler
will assign the appropriate values. (e.g.
‘lcode equ $-start’ at the end of the code
segment.)
Step 2 is to create a macro to print out what
you want to see:

e.g.

show  macre  a,b,c

.printx % Program code length is a bytes %
.printx % Program data length is b bytes *
.printx  * Access subroutine length is ¢ bytes %
endm

If you use the macro in the normal way (show
lcode,ldata,alength) the result would be the
useless messages

* program code length is lcode bytes *

. and so on, with just the direct substitution of



28 80 Bus News

lcode’ for ‘a’, ‘ldata’ for ‘b’, and ’alength’ for
‘c’. However if you precede the label names
with a ‘%’ sign, M80 treats them in a different
way. Instead of replacing parameter ‘a’ by the
character string in the corresponding position
in the macro call, it replaces it by the VALUE
of that character string, {(assumed to be a
label), converted to the current radix. That
brings me to one final ‘tweak’ to using the
macro — we normally think in HEX when
confronted with addresses and opcodes, (or
at least | do), and so in order that the
information is displayed in hex we need to
change the current radix to 16. So the code in
the source file should look like:

.radix 16 ; Change radix to 16

;50 we get Hex display
show $lcode,%ldata,falength ; Use

;the VALUES of the labels
.radix 10 ; Back to normal radix of 10.

If you only want to see the message once, rather
than on each pass of the assembler, the tode
can be bracketed by:

if2 ; If pass 2
. as above..
endif

Microsoft's L80

if you have a large program it is somsetimes
convenient to split it into several smaller
modules. There are then two approaches you
can take on combining these modules. The
first is to combine them during assembly by
using the ’‘include’ command of M80. The
second is to assemble them separately, and
combine them at link time with L80. In the
latter case use is made of the ‘entry’ and
‘extrn’ commands of MB80 to specify which
labels can be referenced from outside a
particular module, {the entry points), and
which labels are in other modules, (the
externals}). However this approach may give
you quite a long command line for L8O which
it can be irritating to keep retyping:

e.g. 180 bitmain,bitl, bit2,bit3,
bit4,bit5,bit6, library/s, fred/n/e

Which links together the seven programs bitmain,
bit1 — bit6, items from the library file ‘library’,
and saves the lot under the filename
‘FRED.COM’. You can save yourself effort by
creating a submit file with the above in it, or
by programming up one of the function keys
on the Gemini keyboard with the command
string. Alternatively you can make M80 and
L80 do some of the work. This is done by
using the ’‘.request’ command of M80. The

‘request’ causes M80 to code-up a request to
L80 to search the specified file{s) for the
routines to satisfy any undefined externals. In
the above example ‘bitmain’ could be edited
to contain the line:

.request bitl,bit2,bit3,bit4,bits,bit6, 1ibry
and as a result the L80 command would reduce to:
L80 bitmain, fred/n/e

There are two caveats to using this approach:
Firstly M80 restricts external names to six
characters, and thus your file names in the
‘.request’ command must six characters or
less. If they are seven or eight characters long
MB80 will truncate them to six characters, and
then L80 will be unable to find the files.
Secondly L80 does a library search. i.e. L80
will only link in those files that contain entry
points that are in its table of as yet undefined
externals. e.g. if the entry points in ’bit2’ are
only referenced by ‘bit6’, then the file ‘bit2’
will not be loaded when it is reached, as its
entry points will not match any of the
‘wanted’ externals referenced by ’‘bitmain’
and ‘bitt’. It is only when the file 'bit6" is
reached that the external references of that
file to ‘bit 2' are added to the ‘undefined
externals’ table. Thus the files in the '.request’
list must be in an order which ensures that
they are all loaded. (if ‘bitmain’ references all
of them you have nothing to worry about.)

$MEMRY

If you are linking together several routines to form
a large program, the problem of workspace
may arise. By workspace | mean ‘where is the
workspace?’. In the case of a single program
requiring — say — two 4k buffers the answer
is simple. The program can end with:

buffl equ $ ; Start of buffer 1
buff2 equ buffl+4096 ; Start of buffer 2
bufend equ buff2+4096 ; End of buffer area

{Note the program ended with EQUs. If DEFS had
been used, the data space would have been
saved as part-of the program —— a total waste
of disk space.) The same approach can be
used when you link programs together with
180, BUT you must ensure the module with
the above definition -is THE LAST MODULE
linked in, (including any library modules),
otherwise the ‘buffl” and ‘buff2’ areas will
overlay program code. Replacing the EQUs
with DEFS would solve the problem, but once
again would lead to wasted space on disk.

However L80 does provide a mechanism for
getting round this problem, but it is slightly
clumsy to use. This is the variable $SMEMRY.
When L80 finishes linking a program it looks



80 Bus News 29

to see if a global variable with the name
$MEMRY has been declared. If $MEMRY
exists, then L80 will set it to point to the first
byte of free memory following the program.
The code below gives a simple example of its
use and contrasts it with the straight forward
approach.

single assembly multiple assembly

entry $memry  ;Define Entry point
1d hl,buffer 1d hl, (buffer) ;Point at memry buffer
14 a,{hl} 1d a,(hl} ;Load byte
1d hl,buffer+128 1d hl, (buffer} ;Point at byte

;128 in buffer
14 de,128
add hl,de

$menry equ § SMEMRY same as BUFFER

buffer equ § buffer defw 0 ;Define buffer

The basic difference is that ‘buffer’ becomes an
indirect reference to the buffer area. There is
no real difference in the code when loading
HL with a pointer to the base of the buffer
area, {one just becomes an indirect load), but
the irritation is when you want to load the
address of a specific location offset within the
buffer area. In the former case the assembler
has already done the calculation for you, and
you are still only loading HL with an immed-
iate value, while in the latter case you have to
explicitly do the calculation in your own code.

Happy hacking!

iy ol e s b E g . s e ey Lo Pusmeosss

e looke o Lhe Famot theat reor
iz Mot ®ms i FFLioulit s e

+ it E 2 LT WS TR S

Converting WordStar text files
to improve their readability

by P.D.Coker

One of the problems associated with using Word-
Star is the lack of clear legibility of the text files it
produces, unless they are being edited by Word-
Star itself. This is perfectly all right on most
occasions, but there are times, particularly when
deciding to delete or dump a lot of text files, when
the tedious business of loading them into Word-
star, reading and then exiting, is a bit too much
trouble. Using the TYPE command in CP/M gives a
visually disturbing result with lots of inverse video
characters at the end of words and no nice tidy
paragraphs. [Ed. — this is not true of CP/Ms
installed with CCPZ, i.e. all Gemini Winchester
based systems, and all Gemini CP/Ms of BIOS 3.0
or later.] This WordStar ‘feature’ is also not
particularly good if you wish to use PEN on a file
originally written using WordStar, since the format-
ting commands used by WordStar are totally
different and a lot more time will have to be spent
deleting them and substituting the appropriate
commands for PEN.

The strange characters which WordStar inserts are
used for justification, tabulating and other form-
atting functions and they are not normally disp-
layed on the screen when WordStar is in use.
Characters such as these have ASCIl codes greater
than 127 (dec.) and are interpreted by the video
controller in an 80-BUS system as inverse (black on
white) letters or symbols. Normal text and some
other symbols used by WordStar have ASCH values
from 0 — 127, and the formatting commands will
not interfere with these.

There are two approaches to this problem. One is
to use the [Z] option in PIP which sets the parity bit
to zero; the following command line will read the
text file B:RUBBISH.TXT and produce a cleaned-up
version on drive A as GOOD.TXT:

A>PIP GOOD.TXT=B:RUBBISH.TXT[Z]

This works nicely because the eighth bitis setto 1
in characters beyond 127 and these are the ones
which cause the peculiar effects. The drawback to
using PIP/[Z] is that you cannot see the edited file
unless you call it up by using the TYPE command.
There may be various tweaks to the PIP command
which will produce a listing on the CON: function
— in this case, assigned to the CRT: device, but |
haven't investigated these, and the thought of
typing extended PIP command lines (I haven't got
a programmable set of function keys on my
machine} didn't appeal!



30 80 Bus News

As far as | am concerned, a much more satisfactory
approach is to use a small BASIC program which
examines the text file character by character and
decides whether or not to print and save the
character in a separate, new file, displaying its
progress on the screen. It is slower than using PIP
but the new text scrolls up at a reasonable rate, so
this is not a major drawback.

The program asks for the names of the source and
destination files and then reads the data from the
source file, character by character. The file names
must be in upper case letters and if either of them
does not reside on the logged—in disk, the disk
name must be quoted — e.g. B:WORKING.DOC. If
a character is found whose ASCIl value is greater
than 127, it is converted back to a value less than
127. The program grinds on until it reaches an
End-of-File marker, prints out a message and then
asks if either the source or destination files are to
be deleted.

A trial run will show that certain print control
characters are not converted properly — such as
‘B, ‘D, "Q, or "E. This is because their ASCIH
equivalents are less than 127 {control characters
have ASCIHl codes between 0 and 31). This means
that there will be normal video graphics symbols
corresponding to these codes in the destination file
and on the screen. The overall effect isn't too
serious, however, except where a lot of fancy
printing is involved in the source file.

10 PRINT"WordStar tidy-up program"

20 PRINT:PRINT"File names must be in UPPER
CASE": PRINT

30 INPUT"Source [dsk:] filename.ext";F1§

40 INPUT"Destination [dsk:] filename.ext";
F2%

50 OPEN "I",1,F1§

60 OPEN "0",2,F2%

70 Z$=INPUT$(1,#1)

80 IF ASC(Z$)>127 THEN Z$=CHR${ASC{Z$)~128)

90 PRINT Z§;

100 PRINT #2, Z§;

110 IF EOF{1l} THEN 120 ELSE 70

120 CLOSE 1:CLOSE 2

130 PRINT:PRINT"Finished" :PRINT

140 PRINT"Delete Source File ";F1§:INPUT R§

150 IF R$="Y" THEN KILL Fi$

160 PRINT"Delete Destination File ";F2§:
INPUT R§

170 IF RE§="Y" THEN KILL F2%

180 END

The interpreted BASIC program implies that
MBASIC.COM must be on one of the drives in the
system, and the conversion process will be rather
slower than would be the case if a compiled BASIC
program was used. With a largish file, the differ-
ence in execution time of the .COM version can be
less than half that of the .BAS, and one has the

added advantage that MBASIC is no longer
required. To give some idea of the time taken, this
article took 54 seconds to ‘tidy’ using interpreted
BASIC and 26 seconds using the compiled version.
To produce the compiled version, one needs
access to BASCOM.COM, L80.COM and OBSL-
IB.REL; the resuitant .COM file does not need
BRUN.COM — which would be the case if BAS-
LIB.REL were used instead of OBSLIB.

NASCOM/GEMINI/80-BUS SOFTWARE

Price P&P
.CP/M-80:
AllDisc (Read/Write most other formats) ................ £150 £1
Turbo Pascal 3.0 £ 565 f£1
Turbo Toolkit (B-tree ISAM file management) ........ £49 F1
ReadUCSD £25 f£1

HUGH PRICE REDUCTION ON UCSD P-SYSTEM

UCSD Development System (IV.13}: including
filer, editor, developmenttoois and 1 compiler
{Pascal, FORTRAN, BASIC) This premiere system
offers dynamic segmentation and separate

compilationtolibraries £195 £2
{Nascom requires AllBootEPROM .........ccoeeevrnenen £ 25)
ExtraCompiler £ 95 f£1

Advanced Development Tool Kit (Native Code
Generator, Z80 Assembler, Linker & Analysis

Tools) £ 95 f£1
AliDisc enhancement (p-systemonly) .......c.ccane £75 £1
PIUtO GraphiCs LIDIaNY w.ooeeeeeeeoseessessseesessessesssssssnee £75 £1
ReadCPM £25 £1

Complete systems (hardware and software)
suppliedto order.

VAT at 15% to be addedto all prices. Please send cash
with order and full details of the hardware you are
runningonto:

Mike York Microcomputer Services
9 Rosehill Road, LONDON SW18 2NY. Tel: 01-874 6244.




Computers is, like, serious 'fings

Lawrence LJf»sMez ~ the
an’ shouMdbe treated wiv a
Tarp, tap- bit of respect.
Hammer, hammer
gtc., ec.

Really
\ l / serious
Computing
noises,
| — WHERKR¢x =]
\l/
‘, ]

In the very Jate se issue ot 8O~ BUS

voice of reason,

Too right,
Tohn !

But....

fan;, vEr €ime ‘as Come

an ble . DRH, an
& add- on for the

L for me to - GuLp- BUY
Oh £411704¢ ie] 70w can a video board!
you ‘av respect fora 48

H i
Character per line screen 7 .I

‘Epstien’ micro~
oaly 50 qu;J.’
'
Nah. Ie ain'e
3enai,¢ Nase. M‘/
G'C-N'm'.

'\ Sick, green

colowr,
R o A T
. :
Lawrence, cash in hand, visies his ,
Mumble, mumble, Pluto, 'm“;r“mﬁ:tgr s;ore o Where a deal is made.
Nascom /IW’C, ete., pec, R{Pg« - 2;?’ we do it ! o;, Jeath- brectk!
HARP wA FTALL
Woh! Vs ver one ORT PIGITALLY | | | 2 issa SVC boerd, Tusr neime)|
I neerj, 'S @ Femint — 3| like, today, man, Tokn, 04,3:
sSvc, Only *SFECIAL % FAiNT got 499 loge!
i Near] NASCOM
Costs ?200 +, early - neut cEmint
. PATSUN
sve board, PEALER,
realistic, 3
,2‘220 as séen, o
(only 500 Jege) y

Lawrence, Cfw sve "“’J; g0es home ., | ..., and fies the SVC inco his N=T.

/ 80 CP}
/ T“Fr tap.

—
Z_ Hammer ;
eec, ., Céc,

1

Fellow members of §0-Bus, I
say unto geu, “Sell ver car,
Sell ver wids, But ALWAYS
buy geauine Nascom /(remini
parts for yeur machine ”.

You can ‘av, l‘ike,cfeefa
respect for a computer
wiv an §0-column d' -
;t& kaou TH .srhy

en

This episode has NOT been paid

for by Nascom and Gemini Micros Led.
I gou would NOT like ¢o pay ina

similar fashion, Contact |~
D.G. Richards. Toayrefail,
Mid, Glam,  South \Wales.




