January-March 1987 Volume 1. Issue 1

%\ Scorpio
NewgI

FOR OWNERS AND USERS OF:—
Gemini MultiBoard ® Gemini M-F-B ® Gemini Galaxy
80-BUS # Pluto * Quantum e 6BK-BUS = Nascom
Gemini Challenger ® Kenilworth ® Gemini MultiNet

P.O. Box 286 - Aylesbury - Bucks - HP22 6PU

ARCTIC COMPUTERS LTD.

6 Church Street
Wetherby

West Yorkshire
LS22 4LP

Tel: (0937) 61644

ARCTIC are specialists in Gemini 80-BUS products with
OVer six years experience.

We are suppliers to industry and education.

lo Research PLUTO graphics specialists for the North of
England.

A full range of equipment is on demonstration including

Designer, Autocad and the Gemini CAD-8 PCB design
system.

PCB Design and Plotting services available.

Demonstrations and callers by appointment only please,
Mail order service available (carriage charged at cost).
ACCESS and VISA accepted.

SPECIAL OFFER TO SCORPIO SUBSCRIBERS

+ EPSON LX86 incl. tractor feed %
only £310.00 incl. VAT & carriage

3

JANUARY - MARCH 1987 SCORPIO NEWS VOLUME 1. ISSUE 1.

CONTENTS
Fage 3 Contents and Editorial
Page 5 The David Hunt Pages
Page 7 Dealer Profile - Harston Spurrier
Page &8 Review of the Newburn Opto-input Board
Page 9 An Introduction to FORTRAN
Page 22 The Computer User's Dictiomary
Page 25 Disk Formats and CP/M Disk Routines
Fage 30 A Look at MulbiNet 2
Page 33 Letcers to the Editor
Page 37 Review of the 2MB Upgrade for the GMB33
Page 38 Doctor Dark's Diary - Episode 24
Page &0 A Beginners' Guide to 1/2" Megnetic Tapes
Page &2 Beview of the MAP-80 Video/Floppy Controller
Page && Private Advert
Page &5 Putting on the S5tyle
Page 51 Making CP/M More User Friendly
Page 57 A S5ideways Look at Benchmarks

Fages 2,61-63 Advertisements

No part of this issue may be reproduced in any form without the prior written
consent of the publisher except short excerpts quoted for the purpose of review
and duly credited. The publishers do not necessarily agree with the views
expressed by contributors, and assume no responsibility for errors inm
reproduction or interpretation in the subject matter of this publication or from
any results arising therefrom. The Editor welcomes articles and listings
submitted for publication., Published by Scorpio Systems of Aylesbury and
printed by The Primt Centre of Chesham.

EDITORIAL

Welcome to the first lssue of Scorpio News. We have agreed with Gemini thar for
current 80-BU5 News subscribers, this newsletter represents the final issue of
their subscriptions. We hope that you like it and that you will now subscribe
to the rest of the 1987 issues of Scorpio Mews.

¥ou will find that this first issue has considerable similarity to previous 8@-
BUS Hews issues. This is mainly due to the materisl, much of which was already
in hand and was thus inherited along with the B0-BUS subscriptions. We hope
that future fissues of Scorpio News will start to take & slightly different form.

For administrative simplicity we have decided that subscriptions will always run
to the end of a calendar year. This way all subscriptions fall due in December,
regardless of when they start, considerably easing the task of issuing renewal
forms. Obviously the rate for joining part way through the year will be reduced

compared to that for the full year.

We apologize for the somewhat higher subscription rate of Scorplo News compared
to B0-BUS Wews. This i in fact to your benefiti B0-BUS Hews and its
predecessors (INMC and INMC-80) were always directly supported by a manufacturer
or dealer, varyingly Nascom, Interface Components and Gemini. Scorplo News is
completely independent. There are three main effects of this.

One is that Editorial independence is, for the first time, totally guaranteed
and the material in the newsletteér will be unbiased towards any specific dealer
or manufacturer - as in fact you should start to see in this lssue.

The next effect is that time that should be being put into production of the
newsletter will not be deflected into other efforts of the company providing the

financial subsidies.

&

Finally, because of the lack of any subsidy, the newsletter has to be totally
self-supporting. The circulation size of Scorpio News is extremely low when
considered against most other publications - this is obvious because of its
extreéemely specialist subject matter. Production costs are basically fixed
regardless of the circulation size, and are therefore high per subscriber if
there are few subscribers, while printing costs are high for small quantities,
but drop dramatically with volume. And this brings us full circle to why the
subscription rates are as they are.

o please, do your bit to help increase the number of subscribers. Tell your
friends and colleagues about us. DON'T give them a photocopy of the newsletter
- we know that this happened with 80-BUS News at a certain user group that meets
in Windsor! - make them buy their own. This is not only contravening copyright
laws, and no doubt costing wvarious employers unnecessary photocopying charges,
but it is also putting the on-going production of newsletters such as this at
risk. To put it quite simply and bluntly - if we can't make ourselves a small
profit from doing this then there's no point carrying on. Sorry sbout that,
lecture over, but these "enthusiasts” doing & so called *favour® for their
friends do irritate us, Support us and we'll support you.

WHAT'S NEW T

And so now onto & lictle product news. There has been a fair amount of activity
gince the last B0-BUS Mews was published and so we will ery and summarize some
of that here.

Hevburn

Hewburn Electronics, based in Ireland, are becoming an increasing force in the
B0-BUS market. They specialize in I/0 boards, and now have 5 different ones
available {(see their advert in this issue). They are also the main distributors
for memory upgrade kits for various BO-BUS boards. And finally, they have taken
over manufacture of the Microcode 14-slot backplane, as Microcode have decided
to drop out of the BO-BUS market to concentrate on some of their other projects.

Gemini

Most of GCemini's efforts of late have been concentrated on their 68000 based
product range. The Challenger comes with a 12MHr 68000 processor, 512K RAM, two
serial and one parallel ports, 1.2ZMByte floppy (formatted), battery-backed RTC
etc, Winchesters of approx. 20, 30, 46 or 73 MByte (formatted) and optional 1/4°
tape streamer. Operating Systems are sxtra and are currently CP/H-6BK, p-
system, multi-user BOS [MBOS5) and multi-user, multi-tasking Mirage. A neat
touch is thart multiple operating systems cen be installed on a single Challenger
Winchester, although only one may be run at a time. Expansion boards available
Bare &-port serial, 1MByte and ZMByte REAM, and various graphics boards.
Available shortly will be an IEEE488 boerd and an input/output board with
various DfA A/D and digital facilities.

On the BO-BUS front there should be 8 tape streamer available shortly, using
avdlo cassette size digital tapes. There is an Intel 80186 based board in the
pipeline that should give "reasonable® IBM compatibility, but availability is
unknown. Similarly a 2ZMByte RAM-DISK is also known to be on its way.

EV Computin

EV are hnuwn to be responsible for the BO-BUS tape streamer software, with
Gemini being responsible for the hardware. They have also snnounced a number of
new products - see their advert in this issue.

Io Besearch

A new Pluto 1 is rumoured, similar to the ald Pluto 1 but complete with palette.
Most of To's efforts of late have been in IBM compatible Plutos, and they have
some wery impressive software for these, called "Designer”. Arctic Computers of
Wetherby can demonstrate most of the Pluto range.

The David Hunt Pages

Farewell BO-BOS Hews - Hello Scorplo News

S0 it's the end of an era. B80-BUS Hews is coming to an end. That's about
geven years of continuous (if erratic) publication under different guises; a far
better record than some computer mags that I could name.

As has been remarked to me by more than one B0-BUS News subscriber, "Is
this the end of Gemini's support for the home user?". Well I fear that it might
appear 50, although the facts could be different. But then sgain, I don't knowi
My hesitation could be that I'm feeling distinctly uninformed and more than &
bit miffed by the way the decigion to pull the plug was taken, Certainly I
wasn't consulted, and the first I heard of it was by earwvigging to a
conversation over lunch at a recent Gemini dealer meeting. Sketchy details were
then announced to the dealers at that meeting in the afternoon. It wasn't until
I started receiving phone calls from subscribers that I learned about the letter
{which of course no-one had thought to send me), announcing the demise, after
the publication of volume &,

o0 what course now, well certainly I shall subscribe to the CP/H Users'
Group, and if asked, may be pen the odd word or two (knowing me, the pdd word or
5000), for them. As to keeping informed on Geminmi products, updates, bugs and
other interesting snippets, I've no doubt that as a dealer I shall find out
vhat's going on anyway. But I suspect that for the general reader, their
proposed Gemini Newsletter will not have the same irresistible tendency to
remain stuck in ones hand until every word has been read (twice) and then
lovingly kepet for future reference. A brilef scan and then chucked in the bin
will, I guess, be more like it.

Ag for support of the existing user bage for Gemini and Nascom products,
Geminl insist that the existing 80-BUS product range will continue well into the
1990°s with & vigorous process of development of new hardware, some being new
products, some being redesigns of earlier products to take advantage of newer
technology. However, the trend has been progressively up macket of lace, and
although the pockets of the more serious ‘computerphile” are pretty lengthy, and
provided the product is the right product then price is of little consequence,
there must come & time when the bottom of the most lengthy pockets hasz been
reached. 1 for one consider the current Gemini developments to be in the wrong
direction, profitable for Gemini possibly, interesting for me - I doubr ft......

This file was found unfinigshed on my 80-BUS disk, and today, the 1Zth
December, I've decided to finish it.

December 1986

Eix months on and how things have changed. I have been in & new and
different job for five monthe, still locsaly attached to Gemini by mecit of a
fmall Gemini dealecship in the Amersham area, although thet isn‘t my main
concern., My new job has widened my perspective of the 'serious’ computer world
and what is more they pay me more moneyl|

Then & few days ago a green leaflet dropped through the letter box together
with & request for any unpublished 80-BUS material I might hawe. 50 I've blown
the dust off the incomplete 80-BUS material I've got lying around and have come
up with this amongst other things. As Scorpio sounded much like that other well
known sign of the Zodiac, I decided to investigate. A bit of digging socon
revealed itz independence and that they have gone out and bought a blue pencil
of their very own. Just to test their independence I'll write something really
contentious for the next issue and gee if they print it - Watch this space. I
hasten to add that I have nothing to do with Scorplo except in the respect that
I hope to become & contributor. Perhaps after my forthcoming effort they won't
print anything from me ever again.

As you can egee from the earlier paragraphs, I was & 'bit miffed' at the turn
of events last May, since then I haven't had the time to worry about such
things, I've been too busy learning and revising my opinions. That doesn't mean
I've deserted my trusty Nascom/Gemini/DH machine at home, but it does mean that
I've spent a considerable amount of time investigating the performance (or in
most instances, the lack of) of various IEM micros and thelr clones. Because
that's what sells (in quantity) whilst Gemini's don't (in gquantity).

The recent experience with other machines has also opened my eyes to the
good points and failings of the more popular competition, but even more so to
the lost opportunities and ostrich like behaviour of many UK companies to adapt
to the wind of change, however unsavioury that wind might be. Unfortunately the
open archicecture philosophy of the IBM type machine is with us, and with us for
a good many years to come; despite, I suspect, that IBHM have only recently
realized what a can of worms they have let looge on the world; and despite the
facet that following that path could well turn out to be & dead end. None the
less, it took someone like IEM to establish some sort of etandard, in disk
formats, in screen addressing modes, in operating system behaviour, in software
portability, et al. And that can't be a bad thing from the user's point of wiew
however much you might disagree with the standards set.

And so to lost opportunities, many entrepreneurial types are importing
Taiwanese and Hong Kong made IBM clone cards. They are making money (perhaps
not &% much ag they would like, becsause there are too many of them) by
satisfying an increasing business market demand. Hot so much for the main
computer cards but for bus cards. MNow many small UK manufacturers have always
been clever at designing cards for exiscing systems, yet I can only name one UK
degigned and bullt card for the IBM, the I/0 Research Pennant graphics card (a
sort of different shaped Super Pluto card}, there may be more, but I don't know
of them. Almost all the imported cards are cheap copies of already established
and obsolete American designs, and yet no new cards seem to be forthcoming.
Here's & hint to Gemini, the GMBYD modem card is & beaut, it's well behaved, and
it's understandable. Come on John (Marshall - MD of Gemini), get a hacksaw to
it, change it's shape, code convert the Gemini modem software and sell it
cheapill It doesn't have to be Hayes compatible (nice if it were) but no-one
out thece is selling a half decent plug-in modem card for the IEM and the market
must be enormous. Commit to making enough of them and you could happlly sell it
cheap enough. Alright, so my suggesting to John to make IBM cards isn't going
to help us B-bit Geminl types directly, but in the long term it could.

For instance, Gemini promised an 8088 or B086 or B01686 "IBM compatible’
adaptor card for the Gemini kit, that is, it's got to run M35-DO5S properly. This
is mno grest secret and the idea has been rattling about for a couple of years
or more. Where is it? I'm not talking about the Costgold card, I don't know
them, and I've never seen 8 review which convinces me of its worth. MHow if
Gemini had made that card a couple of years ago, I, and I am sure many others,
would have bought it then, if the price had been half reasconable. Instead I'm
faced with the prospect of forking up a couple of grand for an IBM AT clone (the
only IBM ocffering which approaches the speed I've taken as being normal for the
last three or four years) because the software I write for work has to be *IBM
compatible® these days. True I've got IBHM machines at work, but 1f I want to
write things over the weekend I have to 1 one of these home with me and they
certainly don't qualify as portable machines. Well not unless you have &
particular liking for wearing a truss.

What I'm saying is that I have been forced into & position where IBM is
beautiful (well not so much beautiful as tolerable) and I'm sure I'm not alone.
I would far rather convert my existing kit into s Nascom/Gemini/DH/IBH hybrid
than to invest in new kit. Such a conversion might be difficult but by no means
impossible, and at lesst I would know what made Lt tick. (That's an indictment
of IBM's documentation, where quantity is everything but guality and informationm
is non-existent.) Come on Johm, it's almost too late, I've got to buy this
machine by February, and I'd far rather give my hard earned loot to someone I'm
charitable enough te think cares, than to some inscrutable chinese represented
in this country by 2 bunch of know-nothing box pedlars]

Dealer Profile - Marston Spurrier

E!d- - This is the first of our Dealer Profiles, which we hope will be a regular
eature, this time taking a look at Marston Spurrier.]

Marston Spurrier consists of Mick Spurrier plus occasional contract programmers
and, as he says, "half a wife and three eighths of a dog". 50 it is one of the
smaller Gemini dealerships, is located in sunny Battersea and specialises in the
Challenger and 68K-BUS with a particular orientation towards the Mirage

Operating System.

How Nick got into the business is interesting because it fillustrates a point
which we are all trying to put across - that a computer will usually be
invaluable in business - and also shows that once the wirus which infects anyone
who does serious programming takes hold it does not let go.

The time is early 1977. Nick is Chief Executive of Argyle Securities Limited, a
public company in property development, investment, retailing, housebuilding,
fertiliser manufacturing, and small-time banking, operating through about 132
companies in the UK, France, Belgium, the Netherlands, Switzerland and the USA.
And he is going quietly mad, wading monthly through mounds of financial paper in
order to keep a grip on precisely what is going on in each company.

Argyle is not a big company being worth just over £20 million (say £80 million
in today's money) but the £20 million is represented by £140 million of assets
gnd £120 million of debt; most of the assets are property and the property crash
is by no means over. MNick needs a computer. The problem is that there aren't
many around and there is certainly no software to buy off the peg. 5o he buys
one of the first Apples which as he says *was pretty useless but a stop-gap® and
starts writinmg programs inm BASIC to consolidate financisl information into an
understandable form.

A few months later on a trip to the USA Nick buys a "proper® micro - a Vector M2
= based on the 5100 bus and runming CP/M. With some considerable efforr,
knowing initially nothing about hardware and little about programming, he has a
home-made database manager and a cash flow analyser up and running. These
provide the basic toole for him to analyse the strengths and weaknesses of his
operating companies and to embark on & programme of disinvestment to stabilise
the business and produce information to keep his bankers as happy as they could
be, when similar companies were crashing to the ground at regular intervals.
This is a fairy story (but true) because having access to more "instant”
information he ie able to sell off companies which have inherent dangers for his
group and monitor the sale of properties and debt repayment schedules so that by
1979, Argyle is turned into a "cash shell" and sold.

Coming to the Gemini connection, in 1982 Nick (now a director of Alllied
Suppliers Ltd, then the 4th largest food retailer in the UK) replaces the Vector
with one of the first Galaxys. This is in order to implement a project to
finalise the rationalisation of the property assets of Allied, which consisted
of 1,250 operating stores and over 800 "investment properties®, which he had
begun in 1980. He wrote the software for this in Pascal and assembler and so
began a *love affair” with low-level programming and the Pascal language. He
also became a Gemini fan because of the reliability of the hardware (plug. plug)
and soon replaced the Galaxy 1 with a Galaxy 3 (Winchester based system). It is
a sad reflection on corporate life that his employers would only permic IBM
computers on the premises so he had to buy the Galaxys himself and conceal them
as Word Processors. This was also a falry story (of the Brothers Grimm variety)
because Allied was taken over by Argyll Foods, Nick's project was satisfactorily
completed, and there was nowhere for him to go but out with a silver-gilt
handshake. So in 1985 he started Marston Spurrier.

With a background in larger businesses, and knowledge of the problems facing
organisations wishing to implement Financial Control and Information Systems
propecly, Nick remained steadfsstly unaffected by the lure of IBM XT/AT systems
and their wealth of software, believing that the future lay in true multi-user

a

"supermicros”. He had heen Fa:tinlly involved in the development of the
Challenger and just after its launch began working, with Sahara Software, on a
port of the Mirage operating system to & prototype machine.

For those of you who don't know Hirage, it is a real-time, multi-user, multi-
tasking networking 05 specifically developed for the 68000 CPU and, like the
Challenger, it is British. The first HMirage-based Challengers were shipped
early in 1986 and Marston Spurrier became the Distributor of Mirage language
processors and software for Gemini Challenger dealers. As refinements have been
made both to Mirage (with & new version due for release as Scorpic Mews hits the
streets) and the Challenger when running Hirage, the combination is (Nick
believes) formidable and there i3 no competition as to price/performance.

Marston Spurrier's business is now wholly based on Challenger systems sales and
development of new software and utilities for Mirage. For example, the latest
product is a Mirage software driver to read Gemini CP/M (80, 86, 68k) disks.
Hick is also & consultant to S5ahara Software (the Hirage sales organisation)
assisting in porting of existing applications to the Mirage environment. One of
the projects he has been involved in will result in the publication in January
1987 of an integrated Word-Processor, Spreadsheet with colour graphics, document
formatter with indexing and table of contents generator, software printer fomt
generator and print package to drive lager printers with software fonts rather
than the inordinately expensive ROM fonts. This is fully multi-user and will
retail at £595 - true multi-user software at a PC price.

All Scorpio News readers, including B80-BUS usersl, are welcome at Marston
Spurrier's offices at 10 Ransome's Dock, Parkgate Road, London 5W1l - just south
of both Batterses and Albert Bridges and the first road joining the two Bridge
Roads - to look at the Challenger/Mirage combination.

A Review of the Newburn Opto-input Board by M. Black

For our particular application, we needed to Iinterface a wvariety of different
voltages to the BO-BUS. We saw an advert from Newburn Electronics for their
HEB71 opto-input board. It seemed just what we needed as the board is self-
contained, and unlike the Haas board does not require the Gemini GMB16 I/0 board
to drive it (therefore less BUS slots are required). We ordered a board with
plug-in modules for 8 of each 12V, 24V, 50V and 110V sensitiviry. We also
ordered the Industrial Klippon termination.

We received the board within a few days, On inspection., the board seemed well
made with a comprehensive manual. 1It's nice to see that B0-BUS manufacturers
now include board-ejectors as standard, this saves many grazed knuckles.

We set the board address to Hex 540 using the on-board Dil-switch and plugged
the bonrd into the rack. We wsed 40 way ribbon cable to connect the board to
the Klippon block. The Elippon block mounted easily on the rear of the rack
using standard Klippon rail.

Connecting a4 suitable wvoltage to the correct Klippon terminals, lit the
corresponding LED on the board, We found it very handy being able to see the
stote of all inputs using the LEDs.

Programming of the board was carried out using Turbo Pascal. This was very
simple as all inputs are read from &4 ports, in this case Hex 540 to Hex $4&3.
Each bit of the port corresponds to one input.

In conclusion, we found the board ideal for our application. Gone are the days
of birds nest wiring and resistive dividers hanging from the rear of connectors
etc. Real inputs can be easily connected using the Klippon termination rail.
This gave us the professional finish we required.

An Introduction to FORTRAN by P.D. Coker

{In thig article, FBO refers to Microsoft FORTRAN-80, ProFortran to the 8-bit
version of FORTRAN from Prospero Software. HWFortran refers to Ellis Computing's
Nevada Fortran and FORTRAN refers to other versioms such as FORTRAN IV or

FORTRAN 77.)

WHY USE FORTRAN?

FORTRAN is, as computer languages go, very old, having first seen the light of
day about 30 years ago as a scientific and technical high level language for
early IBM mainframes - it’s older than ALGOL and BASIC (which owes a lot of its
style to FORTRAN II) and, by comparison, PASCAL and C are infants]

HMost users are aware of the drawbacks of interpreted languages - particularly in
terms of execuction time. FORTRAN is o compiled language in which the source
code {s written using a text editor and then compiled into a run-time package
which will execute much more rapidly than is the case with an interpreted
language. There are two disadvantages to this, however. One is that any
amendments which need to be made to the program involve editing and recompiling
the source code which can be tedious. The other problem is one of cost.
Virtually all compiled languages are expensive (£150 - 350), although HiSoft
PASCAL (a very satisfactory version) costs quite a lot less. There is a very
good FORTEAN compilerc, #old by Grey Matter of Ashburton, South Deveon which is
incredibly cheap. For £30 you get Nevads Fortran and & useful Guide -
admittedly, the implementation of FORTHAN is not complete - but few will miss
the bits the author has left outl

Sa, if you are fed-up with your BASIC and want to try & compiled language, then
it really is worthwhile trying NFortram. True, FORTRAN is a little lese
flexible and efficient tham PASCAL but the converslom of programs from BASIC to
FORTRAN is relatively simple and straightforward. 1 must admit te being
professionally biased in favour of FORTRAN but some wersions of PASCAL are very
finicky about syntax.

FROGRAH STEOCTURE

In BASIC, program entry ls wery straightforward with line numbers and statements
typed in directly but in FORTRAN, the progrem statements must first be entered
using a text edltor such as WordStar (im non-document mode) or PEN before
calling the compiler. All versions of FORTRAN use up to 80 columns per line of
input, organised as follows:

Cals 1 -5 Optional statement number (1 - 99499)
Cal B *Continuation' character field (used only if the
number of columns used by the statement exceeds 732)
Cols 7 = 72 FORTEAN srecement
Cols 73 - A0 {can be used for identification, rude words or
whatever).
COMMENTS

In BASIC, REM statements (or comments preceded by a single quote ('}) can be
used to highlight information about programs. In FORTRAN, the use of & letter C
in column 1 performs the same function; lines go marked are ignored by the

compiler.

10

STATEHMENT FOMEBERS

In most BASICa, it is necessary to give each line of the program an identifying
line number in ascending seguénce since lines are interpreted on an incremental
basis. FORTRAN differs since only certain statements are required to have
numbers and program execution does not depend upon & numerical sequence, but on
the way in which statements are arranged - it starte at the first line and
finishes at the last! Statement numbers are usually only required during loop
operations, data I/0 or where control has to be passed to another part of the
program.

CONTINUOATION LINES

There are occasions when text headings or complicated expresslions or layouts are
used in a program where the space available for the stacement (cols 7 - 72) is
insufficient. A continuation line {(or lines) needs to be used to accommodate
the additional material; in such & case, & character must be typed in column &
and columns 1 - 5 left blank. Usually the first continoation line is labelled
with an "A*, the second with & "B and #0 on; the figures 0 - 9 could also be
used if there are a lot of continuation lines and F80 and ProFortran place no
restriction, unlike some mainframes where & limit of 10 - 20 is quite common.
It is allowable, but not good practice to use the same symbol for succeedin

lines. The normal use of only 72 columns is a hangover from the days uE
teletypes and was malntained when the majority of input was in the form of
punched carcds.

FROCHAM ENTRY

It is pecfecely possible to write small FORTRAN programs on the back of an
envelope before typing them into your micro - but a great deal easier if you use
a8 proper coding form for the purpose in which the various columns and fields are
shown: a typical example is shown in fig. 1. A flow chart is useful when
:ﬂ-h!l‘.:’uﬂtil‘lﬂ; A new program; note that control characters which the text edicor
may insert MUST BE REMOVED - the compiler tends to get uppity if it receives “U
or “G. The program must not be formatted in any way and I would not recommend
the use of DR's ED which is only for the masochists - PEN, WordStar or HiSofe's
ED are much better.

The etatement must staret in or after column 7 of #ach Lline, with a statement
label if needed in columns 1 - 5; the *tab” facility could be used if one has &
dislike of using the space bar although this will usually start the statement in
column 9. If a contdinumation line is required, column 6 must be used as noted
earlier; program statements must finish in or before column 72 unless &
continuation line is to be used.

DATA HAMES AND TYPES

FORTRAN defines data specifically by name and, unlike moet forme of BASIC, by
Lype.

There are four names for data; constants (such as an explicitly stated numbers
or pleces of data): varliables - which are symbolically identified pieces of
data; arrays which are ordered sets of data in 1,2 or 3 dimensions and array
elements which refer to one member of the set of data in an array.

Data types may be Integer, Real, Double Precision, Legical or Hollerith.

INTEGER types are precise representations of whole numbers, positive, negative
or zero in the range -32768 to +32767 and have a precision of 5 digics.

REAL types are approximations of real numbers, to 7+ significant digits which
may have a magnitude lying between 10°-38 and 10°38 (or 2°-127 and 2°127).

11

DOUBLE PRECISION types are real data with an accuracy of greater than 16
significant digits with the same range as real data.

LOGICAL types ace single byte representations of .TRUE. or .FALSE. with
+FALSE. equivalént to zero and .TRUE. has & value of -1; in practice, any non-
zero value will be treated as .TRUE. in & logical IF statement.

HOLLERITH types (named in homour of the inventor of the punched card tabulator)
consist of a string of any number of characters from the computer's character
get, They are sometimes known as 'TEXT' or ‘LITERAL' types.

FEO does not support COMPLEX data types, but ProFortran does. A COMPLEX
variable has two components - & real part and an imaginary part - each of type
EEAL.

FORTRAN constants are of types INTEGER, REAL, DOUBLE PRECISION, LOGICAL,
HOLLERITH and, additionally in FAO0, HENADECTMAL.

The INTEGER type has from 1 - 5 decimal digits together with a "-* sign if
appropriaste. e.g 521, 2, =45, 00012

REAL types have 7 digit precision and are represented either in floating point
(F) or exponent {E) format. For example, 3.21456 is B floating point REAL
constant and 0.321456E 1 is the exponent equivalent - as in BASIC the use of the
*E' indicates "10 to the power' and the figure that follows ig the index of the
power - in this case, 1. REAL numbers can be positive or negative and must have
a decimal point. They will be truncated if the number of figures exceeds the
stated level of precision.

DOUBLE PRECISION type constants have a higher level of precision and obey the

rules for REAL numbers - but with more significant figures or the uwse of ‘D' in
the exponent format - thus 4.1723458600%8 is a double precision number as is -
LTHSD &

LOGICAL constants are either .TRUE. or .FALSE. and generate FF (hex) and 0 (hex)

LITERAL constants are strings of any character except the single guote ('),
enclosed by single quotes, ‘QWERTYUIOP' i1s one such constant.

HEXADECIMAL constants are found in FB0 but rarely in other FORTRAN versions. The
constant ronsists of up to & hexadecimal digits enclosed in single quotes and
preceded by a £ or X. ZI'FAL2" and X'2C" are examples.

FORTRAN wvariables are identified by symbolic names which are strings of 1 to &
alphanumeric characters which are unique to the program in which they are used.
The first character must be a letter (apart from the dollar sign - which is
resecrved for system variables and runtime subprogram names. The restriction of
variable names to a maximum of 6 characters is a consequence of the IBM origin
of the language.

Variables are (by default) of types denocted by the initial letter amd the
conventlion is that integer varisbles have names beginning with any letter from I
to W and real variables begin with A - H and 0 - Z. To complicate matters
slightly, a wvariable may 21F11t1t13 be assigned to & different type by
declaration at the beginning of a program or subroutine. Thus START is & real
variable and ISTART is an integer wvariable by default, but by means of an
explicit declaration statement:

INTEGER START REAL INPUT

as described, the program will treat variable START as an integer and INPUT as a
real. Double precision and logical are declared in the same way.

ASSTGHMENT S

This is the correct way of describing statements which contain an 'equals’ sign.
The use of the '=* sign in FORTRAN is exactly the same as in BASIC and PASCAL.

ARITHMETIC OPERATORS

Again, this is the correct way of describing the +, -, *, /, and ** pperators.
The first four are familiar enough in BASIC but the fifth replaces the "up-
arrow’ used to indicate exponentiation. The order in which the operators work
is as follews - from left to right in three sweeps; these deal respectivaly with
any exponentiation, followed by multiplication or division and finally the
addition or subtraction. There is no precedence between addition and
subtraction or division and multiplication and the use of parentheses (brackets)
can be used to emphasize or change the natural order which has just been
described. Again, there is no difference between BASIC and FORTRAN.

ARRAYS

Arrays are characterised by hawving 1, 2 or 3 dimensions (or more in some
versions of FORTRANI). The size of an array must therefore be declared
explicicly at the beginning of & program or subroutine, by using the DIMENSION
statement inm which the array name (1 - & characters, the first of which is &
letter) and its dimensiong are stated. The process is broadly similar to BASIC
and the relevant programs line appears thus:

DIMENSION SQUARE(10,10),CUBE(S.4,3),LINE(20)

gEives the dimensions of two REAL arrays and one INTEGER array; SQUARE has two
dimensions with a maximum of 100 elements, CUBE has three dimensions and &0
elements apd LINE is & single dimension linear array (vector) which can store up
to 20 INTEGER wvalues only, just as CUBE and SQUARE can only store REAL numbers.
If cthe DIHEWSION statement is preceded by an explicit variable declaration -
such as making CUBE an integer wvariable, the array CUBE becomes capable of
holding only integer data. The values in brackets after the array name are
ceferred to as subscripts snd identify the array elements; on the first occcasion
that an array is declared, the dimensfions must be numerical but if the arcay is
required in a subroutine (the FORTRAN ‘equivalent’ of the GOSUR - RETURN or the
PROCedure in other versions of BASIC), these numerical values can be replaced by
letters or other variable names provided these have been given a value before
the subroutine is called, The value of the subscript should be adequate to deal
with the anticipated amount of data so that if 105 values are input into array
EQUABE, there will be an overflow and program exscution will cease. One
dimension and two dimension arrays are fairly straightforward and are widely
used in BASIC, and the method of accessing a particular array element is
identical in FORTRAM. The three dimension array is simply a series of two-
dimension arrays arranged in 'layers’. In the example given above, CUBE
consists of 1 'layers’, evach with 5 rows and & columns; so that CUBE(4,3,2) =
10.5 indicartes that the arvay element in the fourth row of the third column in
the second layer has the value 10.5 assigned to it and CUBE(5,4,3) = -1.5
indicates that the very last element (row 5, column &, layer 3) has the value -
1.5 assigned to it,

It is possible to reduce storage requirements by three methods; one relles upon
the different amount of storage required by each data type. One REAL data wvalue
occupies & bytes, DOUBLE PRECISION takes 8 bytes, INTEGER takes 2 and LOGICAL, 1
byte. Space can be saved by making sure that data is given an appropriate type
- serial numbers, for exsmple can be stored as Iintegers rather than real
numbers. Another method uses the EQUIVALENCE statement in which arrays camn
share the same storage area - preferably if they are of the same type (integer,
or real). The statement has the general form:

13

EQUIVALENCE (X1),(X2)....(Xn)

- where ¥1..Xn are seguences of two or more variables or array elements,
separated by commas. Thus,

EQUIVALENCE (GROT(6),THISGROT(3,2)}}

= allews the two arrays to share space happily.
Variables can also be EQUIVALENCED -

EQUIVALENCE (A,D)

- i mllowed.

1f EQUIVALENCE is used to save program space, then make sure that you do not
fall into the trap of letting one of the equivalenced variables or arrays
overwrite the other(s). The EQUIVALENCE statement is very useful if = program
contains intermediate variables or arrays which are mot required in later stages
of & program.

The final method of space saving is to use the COMMON block statement in which
arrays and variables which appear in more than one of the program subroutines
are declared as COMMON st the beginning of each:

COMMON /X1) A(20,40),NASTY({100,2)
- are put in each subroutine to save a modicum of space.

In a large program this is very handy! In the sbove example, arrays A and HASTY
are stored in a COMMON area called X1. This area is shared by all subroutines
in which this COMMON statement appears.

EXTERMAL statement

Many functions are provided in the system library and can be called up (&8s in
BASIC) by including their name - for example, SIN, ABS or PEEK (in F80 and
ProFortran)., But others are not awailable and have to be provided from another
subroutine or external function. The EXTERNAL statement does this by allowing
the programmer to specify the name of the external subroutine that does the
required job - thus if you wanted to calculate the volume of a cylinder, a
gubroutine which provided the area of the top could be called in the EXTERNAL
statement as follows:

c POTTY PROGRAM
EXTERNAL CIRCAR
¢ THI5 15 AN EXTERNALLY SUPPLIED FUNCTION WHICH GIVES THE AREA

C OF A CIRCLE
EEAD{ S, 10)HEIGHT

1o FOEMAT (F6.3)
YVOL=HEIGHT+CIRCAR
WRITE(S5,100) VoL

100 FORMAT('CYL. YOL IS5 *,P6.3, 'CUBIC METRES')

¥ THIS I5 FINE AS LONG AS ALL CYLIWDERS HAVE THE SAME SIZE TOPi11
END

Note that if the EXTEENAL statement had been omitted, CIRCAR would have been
incorrectly treated as an ordinary REAL variable by the computer.

14

DATA statement

This is not the same as the DATA statement in a BASIC program. The function in
FORTRAN is to allow the programmer to set up initial vafuqi for variables before
program execution occurs. For example, the values of frequently used constants
could be initislised im this way:

DATA PI/3.142/,BEANS/5.0/.cccu.

In each case the variable name is followed by a wolidus (/), the value of the
variable, another solidus and separated from the next name by & comma.

STATEMENT ORDERING

It is most important, particularly with type declarations and array
declarations, to ensure that these are put in in the correct sequence before ANY
executable program statements.

A sulvable order for most FORTRAMN verslions is:

REAL
INTEGER

DOUBLE PRECISION
LOGICAL
DIMENSION

COMMON

EXTERNAL
EQUIVALENCE

DATA

: {executable statements)

END
Thie applies to both main program and all subroutines, but not all of these will
be required for most programs (thank goodnessi).

SUBROUTINES and FUNCTIONS

These are program sub-units which are called by the main program as required.
They do not occur in precisely the same form in most versions of BASIC (where
the GOSUB...RETURN statements have an approximately similar operation) - BBC
BASIC uses PROCedures which are 8 closer approximation., There is an essential
difference between SUBROUTINEs and FUNCTIONs in the way the main program uses
them; the SUBROUTINE is CALLed by name using the CALL statement and when the
program statemeénts contained in it have been processed, control is passed back
to the main program by means of a RETURN sctatement. Typlcal uses for a
subroutine are where & serles of tables have to be set up or where graphical
data has to be displayed or & complicated expression has to be evaluated.
FUNCTIONs are used differeantly. The function name appears as one of the
variables in an assignment statement and the wvalue of the function (&=
calculated) is used in the evaluation of the assignment. For example, if the
value of pi is required for some calculations involving the ares or
circumference of a circle and the version of FORTRAN you are using does not
supply this &2 one of its intrinsic functions, then & FUNCTION subprogram could
be written to provide it (only & dodo would actually do this bur it iz a good
illustrationl)

FUNCTION PI
C PROVIDES THE VALUE OF PI AS REQUIRED
PI=3.14139
RETURN
ERD

15

The form of the FUNCTION statement is as follows:
FUNCTION name (dummy arguments - Lf needed)
or, more explicitly,
type FUNCTION neme [dummy arguments)

The reason for the second form is that the type can be explicitly declared as
INTEGER, REAL, DOUBLE PRECISION, LOGICAL or (in ProFortran) COMPLEX. Thus, if
the function required was called LENGTH and it was a REAL number rather than an
INTEGER, the correct form for the FUNCTION subprogram which gave the single
value for LENGTH would be:

REAL FUNCTICHN LERGTH

The same rule applies if the function name is one which by defaulet would be a
REAL if an INTEGER wvalue was required. For example:

INTEGER FUNCTION AREA

INTRINSIC FUNCTIONS

In all high-level languages, there is a range of particular functions for which
the necessary code is supplied - such as INT or ABS in BASIC. These are termed
Intringic functions and are called by name to produce a particular wvalue. There
are rather more intrinsic functions in FORTRAN than will be found in most BASICs
gince some are available in integer, real and double precision forms. There is
always a list of these in the documentation associated with the version of
FORTRAN you are using., Some old favourites like CHR$ and LEFTS are never found
in FORTRAN, others are spelt differently - SIGN rather than S5GM - but most are
readily interpreted.

EXTERHAL FUNCTIONS

Again, these have their counterparts in BASIC although many are available in
double precisign or even complex number forms in addition to the conventional
real number form - typical of these are the trigonometric funcrionms, SIN, COS or
TAN, and SQRT - spelt differently to the BASIC way (S5QR). There is log base e
(ALOG) and log base 10 {ALOG10) and a random number generator - variously spelt
END or RAND. A list of these will also be found in the documentation, together
with a list of restrictione on the type of wvariable with which they can be used
- thus if you want the square root of a variable it must be of type real or
double precision and If it is en integer, this must be converted to real by the
use of a cunning little intrinsic function called FLOAT. Failure to do this
first will lead to an execution error and the program grinding to an
unproficable halt. An external function called IFIX does just that to REAL
numbers, converting them to INTEGER type.

DATA INFUT/OUTFUT

On first acquaintance, this appears to be rather more complicated than in BASIC,
but it is & great deal more flexible. Dats to be read into or results output
from a program can be in almost any desired form provided the machine is
properly instructed by means of & FORMAT statement. Data is read in from either
keyboard or disk file using a READ statement and written to the screen, disk
file or printer by means of a WRITE statement. In their basic form these are as
follows:

READ (u.f) k or WRITE (u.f) k

16

where u is the physical or logical unit number, f is the statement label of the
associated FORMAT statement and k is a list of variable names, separated by
commas although it is optionally possible to use the form:

READ (u,f,ERE=L1,END=L2) k or WRITE (u.f,ERE=-L1} k

where L1 is the label of the statement to which control is passed in the event
of an I1/0 ERROR and LZ the statement label to which control is passed if am END
OF FILE is encountered. These are extensions of data I/0 not found in the 1966
standard.

The Logicel Unit Mumbers referred to above are normally aseligned as follows:

Units 1, 3, & and 5 are assigned to the console/VDU; Unit 2 is assigned to che
printer. Units & - 10 are sssigned to disk files. Umnicts 11 - 255 may be
asgigned as the user wishes (and units 1 - 10 may also be re-assigned if you
really want tal)

For most purposes the default assignments will be found adequate but for further
information, the appropriate reference manual must be consulted.

A typical READ statement will look like:

READ{5,35) K.L
35 FORMAT(I3,2X,14)

in which two data entries, K and L are read in from the keyboard with field
widths of 3 and & respectively, separated by a blank Field of 2 spaces. The
same holds for a WRITE statement since, if it is in the same program subroutine,

WRITE(2,35) K,L

will cause the values of K and L to be output on the printer, starting in column
1 and separated by 2 spaces. Statement numbers must not be duplicated in the
same subroutine but more than one READ/WRITE statement may cefecence a given
FORMAT statement.

Alphanumeric text material (letters, symbols and figures) may be used as program
I/0 by means of a FORMAT statement in one of two ways which employ Hollerith
field descriptors; the first (and less convenlent) method involves the
programmer in counting the exact number of characters and spaces to be input or
output - tedicus for long titles, while the other simply involwes placing the
entire text between single quotes ('}. In both cases, the program statement
must not run beyond column 72; if a longer text string is needed;, then a
continuation line is uwsed. The statements:

WRITE(6,100) L
100 FORMAT[ZO0HDATA FROM EXPERIMENT ,I3)

and

WRITE(&,.100) L
LO0 FORMAT("DATA FROM EXPERIMEWT',I13})

are treated in the same way by the compiler but the first uses the Hollerith (H)
field width descriptor - 20 units wide in this case and the same as the text
including speces while the second uses single gquotes as text delimiters - a lot
eagler to usel The expressions mean "write to & disk file the text followed by
the current value of the variable L.

On both input and output, text can be split between lines by using the solidus
(/). As far as input is concerned, this applies to disk input data files as
well as to punched cards or paper tape - both of which are unlikely input media
for the average micro user. The first example given above could be revritten
as:

-

)

100 FORMAT(9HDATA FROM,/,l0HEXPERIHENT T3}
which would print out as:

DATA FROM
EXPERIMENT 1 [assuming that L had a wvalue of 1)

FA0 and ProFortran recognise ten different types of I/0 field descriptor:

Alphammeric [A - Z, 0 - § etc.]

Double precision numeric

Exponent form [e.g. 1.1E0& = 11,00Q]

Floating point [e. ? 12.34]

{can be used for floating pnint or exponent)
Hollerith {string}

alrernative to Hollerith

Integer data [e.g. 12, 560]

Logical [Tirue) or Fialee)] - not often used.
optional scaling descriptor used with D.E,F and G
conversions either as o multiple or a fraction
X blank space

for)

LW =EOME D

These are falrly standard for most FORTRANs but NFortran does not have Double
Precision or the scaling descriptor P. It does have T (tabulation}, K
(hexadecimal) and Z (inhibit <cr,l1f> on output) which might be useful.

Most users will only be concerned with AE,F.H,1 and X descriptors; apart from
the H and X descriptors, which have the general forms nH or nX where n is the
number of columns each descriptor covers, the rest have the operational form eZy
where r is the number of repetitions of the field descriptor if this is grater
than 1, Z is the descriptor type and ¥y gives information about the total width
of field required for each repetition.

Some examples would not come amisé here -

10A4 indicates 10 alphanumeric fields each & columne wide

EB.2 indicates 1 exponent field 8 columns wide, where theéere are Ltwo
figures after the decimal point. Thus 12343.67 is represented
as 0,12F 05 {where the ' represents = blank column in which
nothing is printed)

E12.5 is a single exponent field of 12 columns in which 5 figures
follow the decimal point and & figure such as -12.345678 would
be represented as -0.12345E 02. This implies that the number
is truncated (shortened) and loses some aCCUracy.

F3.0 shows that a floating point number occupying 3 columns is
involved which has no significant numbers to the right of the
decimal point. 7.0 or 2.0 would be shown in this way.

FB.4& shows that the floating point (real) number occcupies B columns
and has &4 digits to the right of the decimal point. 123.4567
is & suitable example; a real number such as -34.8908B8 would
be shown as -34.8909, since the field only permits & maximum
of 4 digits after the decimal point. Overflow can occur if the
number of digits to the left of the decimal point cannot be
fitted into the space avallable - thus 1234.56 would be
printed as *.56 - the msterisk shows that the field width was
too small.

413 indicates that there sre four 3 digit integer fields involwed;
thus 123, 245, 778 and 200 are represented as: IIEIiSJTSEEH
while -30, 2, 45 and 559 are represented by -30 2 45559. 1Inm
the latter case, the "-' sign occupies 1 of the columns in its
field end the numbers with less than 3 digits are right
justified.

4X this shows that & columns are to be skipped (not read or
printed)

18

Field descriptors can be mixzed in a format statement if a particular mode of I/O
ig required. Thus if a record such as & batch identifier and number, followed
by various parameters is to be read or written, the associated format statement
could look like this:

FORMAT (A4, 2X, 13, 2X,3F6.1)

This looks complicated but means that a 4 letter batch identifier and 3 digic
batch nmumber are followed by detalls of 3 parameters expressed as floating point
numbers; the batch i/d and serial numbers are separated by 2 spaces as are the
serial number and parameters. The output would appear as:

TLOTT 123 23.34517.27011.55%

This looks & bit messy and the parameters should be spaced out; this can be done
simply by amending part of the format description to include spaces:

either - (A4,2X,13,2X,F6.3,2X,F6.3,2X,P6.3)
which works but is untidy
or = (A4, 2X. T3, 3(2X,F6.3))
which also works but is better programming practice.
The effect of the change is as follows:
TLOTT 123 23,345 17.270 11.555

The overall effect is to carry out the reading or printing of 3 sets of similar
combined fields amd it should be noted that combinations of field descriptors
used in this way should be enclosed in round brackets.

CONTROL STATEMENTS

These guide the flow of the program and are of ten types (some of which are
identical to their BASIC equivalents)

1. GO TO Z. IF 3. STOP 5. ABSIGH 5. DO
&. CONTINUE 7. CALL B. PAUSE 9. RETURN 10. END

GO TO statements

These may be unconditional (e.g. GOTO 100 which transfers control to another
part of the program just as in BASIC): computed [e.g. GOTO {80,90,100,123) K,
where K is an integer variable such that if K has a value of 3, then control is
passed to the statement label which is third in the list - in this case, 100].
Note that if the value of K is 0 or greater than the number of statement numbers
in the list (4 in this case), then control passes to the next logical statement
in the program seguence.

Assigned GO TO statements are not often used and the ASS5IGNed statement label(s)
must be declared before they are used in this way - thus:

ASSIGN 100 TO MILE - ensures that in an assigned GOTO of the form
GOTO MILK - control is only passed to statement number 100

More than one ASSIGN statement can be used so that i

ASSIGN 212 TD MILE - the next assigned GOTO which mentions the variable
MILE will look like:

GOTO MILK,.{100,212) - and control will be passed to whichever statement
number corresponds with the curcent value of the
variable MWILEK.

18

TIF Statement

Two types of IF statement are used in FORTRAN - the arithmetic form and the
loglcal form. The arithmetic IF takes the form:

IF{expression) L1,L2,L3 [L1,LZ and L3 are statement numbers)

If the value of the expression is less than 0, control passes to statement no.
1, if it is equal to O then to statement no. 2 and if it is greater than 0,
control passes to the last named statement -

IF(8-1) 3,5,7 = if the wvalue of N-1 is 0 then control passes
to the statement label no. 5.

The logical IF statement has &n almost exact parallel in BASTIC and it takes the

form:
IF{logical expr.) statement

The logical expression is eveluated as .TRUE. or .FALSE.; 1lf true, control
passes to the statement immediately following otherwise control passes to the
next program line. The logical -:rrlllian can contain both logical and
rulltinn:f operators, which are def as follows:

Logical operators

«HOT. ~AND, OR. .XOR.
Relational aperators
«LT. less than. LE. less than or equal to
EQ. equal to .ME. not equal to
&T. greater than .GE. greater than or equal to

Relational operators are self explanatory but logical operators may need a
litecle clarification.

If A and B are logical expressions, then:
ROT. A is the logical opposite of A {0 bits become 1 and vice versa)
A.AND.B the value of this expression is the product (logical) of A and
B. This implies that the value is .TRUE. if A and B are
.TRUE. and .PALSE. otherwise

AOR.B this produces the logical sum of A and B. In this case the
value iz .FALSE. 1f A and B are .FALSE. and .TRUE. otherwise.

A.-XOR.B the value of this expression is the exclusive OR of A and B.
Here, che value is .TRUE. if only one of A and B is .TRUE.,
otherwise it is .FALSE..

SETOPF statement

This is self explanatory. It causes program executlion to cease at that point;
if the form:

STOP (string of 1 - & characters)

is used, then the characters in the string will be printed out on the monitor
and program executicn then finishes.

20

PADSE statement
This command also stops the execution of the program. It #lther takes the form:
PAUSE or PAUSE (string of 1 - 6 chacacters)

The characters, if presemt are displayed as before and program execution can be
resumed if needed by typing sny character other than 'T* - which terminates the
program at that peint. This statement should be used with care since not all
FORTRAN compilers support it in precisely this fashion.

CALL statesment

Thizs statement transfers control into subroutines and provides parameters for
use by the subroutine. It has the general form:

CALL subroutine name (dummy arguments)

Dummy arguments are values of expression which need to be transferred from the
CALLing Trng:nm to the subroutine so that it can work properly. A more detailed
explanatisn is given in Alcock (pp 68-69) or in the Microsoft F-80, NFortran or
PraFortran documentation.

EETURN statements

These are always used when control ig to be passed back from the subroutine to
the CALLing program.

D0 statements

These provide a means for executing a serles of statements Iﬂf'titi?ily' just as
in the FOR - NEXT loop im BASIC. The DO statement takes the following form:

DO J K=M1,M2 M3 - or, where M3 is 1, it may be omitted
[] is a stactement label, K is an integer or variamble
and M1, HZ and M3 are integer constants or integer
or variables)

A typlcal example might be:
Do 146 I=1.5
: {a series of executable statements}

14 PROD=FROD + A(I)
WRITE(S5,100) PROD
100 FOERMAT(F5.3)

in which the program executes the DO loop five times (a8 I goes from 1 to §)
before writing out the result. The stavement label J must actually occur and it
must not be a S$TOP, PAUSE, RETURNM, arithmetic IF, GOTO or another DO. The
controlling index K must be an integer and always positive; M3 is the increment
thus if the first line of the DO loop was replaced by:

DO 14 1=1,9,2

successive loops would increment the value of I by 2 (1,3,5,7,9) rather than
singly; this is analogous to the STEP statement in BASIC and some versions of
PASCAL. DO loops can be nested so that one or more may exist within the range
of a larger loop but these nested loops must terminate inside the maln loop.
Other features of DO loops are noted in the Microsoft or Prospero reference
manuals,

21

CONTINUE statement

This is normally used as the terminator of a DO loop. Although it is classified
ag Bn executable statement it really does nothing. It is very useful if the
normal terminator of a DO loop is one of the forbidden statements (GOTO, STOP
etc.)since it allows the successful completion of the loop before control is
logically transferred to the next line of the program. In the above example,
gtetement label 14 could be altered to:

FROD=FROD + A(I}
14 CONTINUE

IF{PROD) 24,56,71
71 WRITE(S5,100) PROD

atc.

In this case control is passed to 71 and the value of PROD is printed if it is
greater than 0.0; otherwise control is pagsed to another part of the program.

END statement

This is always the last statement in a FORTRAN program and its execution causes
control to be passed to the system exit routine and thence to CP/H; it has the

forms
EHMD

end may have, optionally, & statement number.

CONCLUSIONS

This article was not intended to teach prospective users how to use FORTRAN, but
to give intending users some idea of the way in which it cen be used. A couple
of books are worth mentioning which will give a more comprehensive coverage of
the language. Wainwright and Grant's contribution is quite handy since it
treats BASIC and FORTRAN in parallel (there is a similar book for BASIC and
PASCAL) but the book is poorly produced by Babani and includes a simple FORTRAN
‘interpreter’ written in Spectrum BASIC - & nasty bit of work with many errors.
Alcock's book ie in the same mould as hie original book on BASIC and is well
worth getting if you like his style. I recommend it to all my students since it
ig infinitely more readable than the majority of so-called text books on
FORTRAN .

References
Alcock, D. (1983) Understanding Fortran. OCambridge Univ. Press.
Wainwrighe, 5.J. and Grant, A. (1984) BASIC and FORTRAN in parallel. Babani.

¥ 4

The Computer User's Dictionary by D.R. Hunt

To err is human, but to make a total cockup you need & computer.
ssssBs FOwer 1986

ASCII n. A table of numbers and letters designed to make communications
between computers standardized, unless it is called EBCDIC.

assembly v. The act of converting a fl.t],].:r working and debugged source program
into 8 non-working object program.

backup n. A urtl; used copy of important data, usually two generations out-
of -date or corrupt when required.

backup v. The act of copying out-of-date data over the only existing copy of
up-to-date data. The regularity with which thie is performed is in inverse
proportion to the importance of the data.

bug n. A hidden and undocumented feature within a program designed to perplex
the average user of & program by producing unpredictable results from & given

input.
bus n. An Incompatible method of connecting warious computer parts together.

COMMS PrOgOEE M. A program specifically designed to allow two computers to
communicate with each other until actually used,

compiler n. A program, the purpose of which is to convert flawless source
files into programs containing hidden features specially introduced at the whim
of the compiler writer.

compile time a. The time taken for a compiler to complete its task. Usually
measured in units of time known as cigarettes. Compiling small programs with
fast compilers usually takes less than one cigarette, in the case of some
compilers and large programs, the programmer has usually upj,rnd of lung cancer
before the task is complete.

computer n. An #lectronic machine designed by the initiate for use by
business offices and other places of work to dull the senees, to increase the
work load and to complicate the decision making process.

computer op. 0. One whose job it is to sit in front of & terminal and watch
the lights blink.

computer purchaser n. A person responsible for the purchase of a computer
system based on the size of the lunch offered by the computer salesman.
computer salesman n. A&n enthusiastic person who talks & lot, thinks a little
and knows nothing.

computerization v. To create disorder out of order by using a computer.
corcupt data n. A strange form of computer dyslexias. Data which should

normally be used for preparing bills or inveoices, also for name and address
lists. Data which has been enteced correctly and yet contalne peculiar errcocs.

data n. Information which would normally be stored on paper, but has been
committed to computer Iinm error.

database n. A disk file which contains date in a form which is impossible to
reconstruct when corrupt. The likelihood of a corrupt database ig Iin direct
proportion to its length.

data prep. v. The human act of committing faulty information to computer
using the wrong program incorrectly.

23

debugging v. The act of removing bugs from a program. The number of bugs
found is always one less than the number of buge present.

diask n. A flat rectangular ohject bearing no relation to a diek, used to
store data and programs.

disk drive n. A machine for wearing out disks and for overwriting important
data.

EBCDIC n. A table of numbers and letters designed to make communications
between computers standardized unless it is called ASCII.

formatr n. A conspiracy between manufacturers to ensure disgk incompatibility.

format v. The act of instantly destroying any required data. Particularly

where backup copies do not exist.

hard dizk n. A more expensive and intricate version of a disk drive, usually
justified where speed and data size are not a prime consideratiom.

head crash n. A particularly useful way of explaining loss of data or
justifying large service charges. The deliberate act of an inanimate object,
the hard disk, to behave in a perverse animate way in loading the disk drive
head physically on to the hard disk whilst it ie in motion.

head crash v. Banging of the head on the terminal to alleviate the anguish
cauged by the use of a computer.

IBH n. A large faceless international conspiracy of non-political computer
salesmen dedicated to complete world domination and to propagating the Great
American Dream.

language n. A syntactical grammar used by the programmer to write a program.
Simple languages are usually easier to learn than Serbo-Croat whilst some
camplex languages look more like Mandarin Chinese.

mainframe n. A large and complex machine designed to maintain the mystigue
and mystery surrounding systems analysts and programmers.

microcomputer n. A smaller less complex cone operator version of the mainframe
designed to produce symptoms of acute frustration inm operator.

manual n. A door step or table support. A printed list of instructions for
using a program; a mancal must be written in an incomprehensible language and
have little relation to the program in question. The size of the manual is in
inverse proportion to the complexity of the program.

modem n. A display box to advertise either a red triangle sticker or s greem
circle sticker. Green circle stickers are officially preferred, red circle

stickers are cheaper and more useful.

network n. A method of cﬁnnictlng.l number of computers together in such a
fashion that the degree of frustration caused by using the network increases
with the square of the number of computers connected.

object n. The string-of-number instructions to & computer produced by
assembling a fully understandable source program into totally incomprehensible

garbage.

operating system n. An interface program between the computer and the program
to ensure that program interchange is impossible.

peripheral device n. An ad junct to a computer the purpose of which is to
translate the results of computation into such a form that can be understood by
the average moron or another computer,

24

printer n. A mechanical paper shredding machine.

ProOgram n. A list of instructions to & computer which rarely does what is
required, or when it does, contains hidden untested festures which preclude its
Proper use.

ram v. The writing of a perverse list of instructions to & computer
usually written in a language incomprehensible to the layman and programmer
llih.i

program crash n. The result of any working program which stops for no reason
whilst performing a large or unrepeatable task. This could be a special
feature, sees bug.

TEEmET 1. One who attempts to write a program, the logic of which has
been i1l understood from the outset and is beyond the mental capacity of the
person writing it.

protocol n. A method of specifying the order in which things are to be done,
usually refers to communications between computers where idlnt?l:ll protocols are
certaln not to talk to each other.

RAM 1. Random Access Memory., The area within 8 computer for storing or
manipulating programg and data. Parkinson's Law applies in that programs and
data slways expand to fill the available RAHM.

realeime n. Some feature of a program which acts automatically and is too
fast for the intervention of the operator.

serial interface n. A method of connecting & computer to & peripheral device
which either too fast or too slow or has the wrong protocol for the device in
guestion.

service company n. An insurance company which knows nothing about computers.

ginclair n. (proper) The given name of the Creator, the Great God of
computers. MHNow known to have been a false God in the light of the Revelations
of Sugar.

Sinclair v. To advertise for sale before the availabdlity of a product to
gegess market demand. To make money out of Scotch Mist.

Sinclair C5 n. An animated bathchair produced in error by the the Computer
God s a new portable computer. Its main instruction was to go forth and
multiply the money invested by the Gods, an act it manifestly failed to do. A
more conventional design and provision of a keyboard might have proved more
worthwhile.

source n. A list of readable instructions partially understood by the
programmer which forms the basis of a bug-ridden program.

systems analyst n. One whose job it ie to decide, wrongly, what your business
is, and to translate those decisions in to & form bearing llittle relation to the
original job definition.

terminal n. A television like device whose capabilities are usually slightly
less or too slow to play the latest realtime verslom of Space Invaders.

write protect tab n. A small piece of opaque sticky tape normally fitted
across & notch in the disk to ensure thet & disk can not g' written to when
required or by omission, to ensure that a disk may be written to when not
required. Standardization dictates that 8* disks work in the presence of the
write protect tab, 5.25" ones fall when the tab is fitted.

25

Disk Formats and CP/M Disk Routines by M.W.T. Waters

[Ed. - this article runs to some twenty plus pages in total. I have therefore
gplit iv up, and this is the first part, concentrating on the format that data

is actually written onto disks in.]

Have you ever wondered about how CP/M stores away its data, how the directory
records relate to the files on disk, what determines the minimum and maximum
file sizes or what determines disk size and the number of directery entries

available?

There are several good books available about CPfM but none of them appear to
cater for the dabbler in operating system software or for the type of 'hacker’
best described ms &n 80-BUS user. The Digital Research handbooks contain all of
the data required for a manufecturer to implement CP/M on & microcomputer but
rarely explain WHY a particular disk parameter, say, is given & specific value
or HOW it fite into the great scheme of things.

I should mention here that I was introduced to computers when hackers were
{mainly) electronics enthusiasts who built computer systems from scratch and
taught themselves programming by sheer hard work combined with more than &
litele trisl and error. These daye, hacking seems to apply to juwveniles
{generally) who illegally enter other peoples computer systems and create a bad
name for home computer ugers.

Most of the information contained in this article is available to the average
B0-BUS user who is armed with a dissssembler, the CP/M manuals and lots of time
and patience {(or as someone else put it, "Stupidity and sheer bloody
mindedness®}.

Disks and disk formats

Before proceeding with an in-depth breakdown of CP/M, I shall describe, briefly,
floppy disks and floppy disk formats and then go on to examine the data
physically written to the disk surface during formatting. The examples given
will be oriented towards the current Gemini 5.25" disk formats but will be
equally applicable to any IBM 3740 or IBM 34 type disk format (eg: Nascom).

A floppy disk consiste of a disc of thin mylar (a flexible plastic) that has
been coated on both sides with ferrous oxide; the same materisl that is used to
coat magnetic recording tape. The disk surface itself is contained in and
protected by a covering of some sort with cut-outs to allow access for the
read/write head{s) of the disk drive. Disks are available in four sizes; 8",
5.25", 3.3° and 3" with 3.25" being the most commonly used by microcomputer
manufacturers. In the case of 8" and 5.25" disks, the covering (known as the
envelope) is made of cardboard while the other two sizes are protected by a
rigid plestic case.

In use, the disk 1z rotated, usually, at a upiform spead (the S5irius
microcomputer being an exception) and data is written to or read from the disk
by one or two read/write heads similar to those used in tape recorders. Floppy
disks may be either single or double sided. Disk drives that are designed for
single sided operation only have one head while those designed for double sided
pperation have one head for each side of the disk. However, with early 3° disk
drives, to access the second side, it is necessary to remove it from the drive
and physically turn it over. For most disk operating systems (DO5's) this latter
type of disk appears to be two separate disks joined back to back.

From this point on, I shall only refer to 5.25" disks but the princliples
involved are very similar to the other types. The disk surface is divided up
into a number of tracks at the time of formatting; the number of tracks
depending upon the disk size and the physical charecteristice of the disk driwve.
The read/write head is permitted to access each track by stepping the head in or
out under software control. The disk is given a reference point in terms of

26

rotation by an index hole which marks the start of all of the tracks on the
disk. This index hole passes oveér an optical sensor, once every revolution of
the diek, thue indicating to the disk drive that the head is about to find the
beginning of the currently selected track.

Two standacds have evolved for the number of tracks on a 5.25" disk. These are
48 tracks per inch (tpi) and 96 tpi although drives are now available which will
achieve 192 tpl. The useful recording area of a 5.25" disk is just under a one
inch band and so &40 or 80 track drives are usual although we all know of the
Gemini and Superbrain 35 track 48 tpi formats, when the earliest drives had only
that number of tracks. It is fairly obwious that in order to increase the number
of tracks on a disk, the read/write head must write narrower strips to the disk.

Esch track on the disk is divided up into & number of sectors. These sectord are
generally one of 128, 256, 512 or 1024 bytes long depending upon the disk format
chosen by the manufacturer. The Gemini SDDS format uses 128 byte sectors while
the DDDS, QD55 and QDDS formats use 512 te sactors. (Om most disk systems, the
pectors are written to the disk by the format program and disks formatted in
this way are known as soft sectored disks. Some systems (Apple for instance) use
hard sectored disks where the sectors are physically marked on the disk by small
holes similar to the index hole.

Consider, for a moment, the Gemini QDDS disk format. Disks in this format have
two sides, 80 tracks per side with ten 512 byte sectors per track. The aides are
numbered O and 1, the tracks are numbered O to 79 and the sectors are numbered 0
to 9. On some systems, the sector numbering starts at sector 1 so that the
sectors would be numbered from 1 to 10. Some computer manufacturers start with
other numbers but 0 and 1 are the most common values. This side, track and
sector information is physically written to the disk during formatting so that
the disk controller chip can identlfy the current side, track and sector by
reading the disk. How this information ls written to the disk will be looked at
shortly but suffice to say that because the sector numbere are held on the disk
g 8 prefix to the data held in those sectore, the disk controller can find a
sector and read its data irrespective of the order of the sectors on the track.
If the sectors on & track are not held in numerical order (le: 0, 1, 2Z..... B,
9) then they are said to have been skewed.

Sector skew and its companion sector translation are used to improve access
times when reading from or writing to & disk. Imagine that a disk has its
sectors numbered sequentially from say 0 to 9 and that we wish to read sectors O
and 1 in that order. Having found and read sector 0, there will probably be &
delay while the processor is deciding that the next sector it wants is sector 1.
Meanwhile the disk will still be turning and by the time that a regquest is sent
to the disk controller to cead secter 1, that sector will have probably passed
under the disk head and the controller will have to wait until sector 1 comes
around again. To overcome this problem, some manufacturers including Gemini
allow the disks sectors to be physically skewed during formatting. If we look st
a track on the disk, the sector numbers may look like this:

07T &4&1852086173

In the example given, if we now read sector 0, two sectors will be allowed to
pass under the disk head before sector 1 comes round and the processor should
now have plenty of time to make its mind up. Obviously, the amount of skew
employed depends wvery much on the speed of the processor and too much skew is as
bad as roo litcle when it comes to slowing down disk access.

Sector translation uses & similar principle to sector skew except that it is a
software measure to achieve the same result. With sector translation, a table of
sector numbers is held in the computer memory. This table may look like that
given below:

0369258147

What happens now is that although the physical sectors will be in sequential
order, the data is read from or written to the sector pointed to by the

27

translation table (known as logical sectors). In other words, using the table,
when sector 0 is required we find that the data will be read from sector 0 but
when sector 1 is required, we actually read from sector 3. If you compare the
resulte of the skew table and the translation table you will see that they have
an identical effect with one exception. A disk that has been written using
sector translation must be read urini the same translation table, otherwvise
rubbish will result as the sectors will be read in the wrong order. If, howewer,
a skewed disk is read on 8 machine that would normally use a different skew
factor (ie: perhaps the skew was set up for a ZMHz processor and we are reading
on a 4MHez processor), the only penalty would be one of speed of access. It is
worth noting perhaps that Gemini skew the system track of the disk differently
from the date tracks. On the system track, the sectors are recorded in the order
shown below while the sectors on the data tracks are skewed by 0, 1, 2 or 3 as
chosen by the user. The example sector skew shown a little earlier had a skew
factor af 2.

Example of sector skew on the system track:
024 6B1L3S5TA

Getting back to the physical disk format, let us now look at what is physically
written to the disk during formatting. Most disk controllers format the disk by
writing & complete track at a time. To do this, the host microcomputer will have
assembled a memory image of the track which it will then transfer to the FDC
{£loppy disk controller) chip. The data consists of gaps, index and address
marks, track, side and sector numbers, CRC bytes and of course the areas for
saving the data.

Let us break the track up into its component parts and examine them in detail
starting with the track, side and sector information and the area for the data.

Each disk sector is preceded by an ldentification block conteining information
about that sector. This block is six bytes in length and is identified to the
FDC chip by an ID address mark immediately before the block. The data in the
bleck is as follows:

1 byte - Track Humber
1 byte =~ 5ide Humber
1 byte - BSector Mumber
1 byte - Sector Lemgth
2 bytes - CRC bytes

The track and sectoer numbera on the disk may lie im the range © to 255 although
this will obviously be limited to the number of tracks that the disk drive fl
capable of accessing and the number of sectors that will fit on one track of the
disk. The side number takes the value 0 or 1. The sector length byte (with the
FD1797) may fall in the range 0 to 3 and the values correspond to sector sizes
of 128, 256, 512 or 1024 bytes respectively, The two CRC bytes are automatically
computed by the FDC chip and will be written to the disk when instructed to do
g0 by the host computer.

When the FDC is instructed to read a sector, it first waits for an ID address
mark and then reads the ID block. If the side, track end sector information
matches the values given by the host computer, and if no CREC error has occurred,
the FOC will transfer data from the data area following the ID block. The data
area will be of the length indicated by the sector length byte and is preceded

8 Data Address mark on the disk. Initially, the data area contains the wvalue
O0ESH for every byte. This value is set during formatting but in fact any value
could have been used. 0E5H is used, by convention, becauss IBM used this value
in their original floppy disk formate (back in the dim and distant past when 8"
floppies were used with mainframe computers and micros had not yet been
invented). Finally. the data area is terminated wicth 2 CRC bytes for error

checking.

Writing a sector is similar to reading but after the correct ID block has been
found, & data address mark is written to the disk followed by the number of data

28

bytes indicated by the sector length byte. Finally, the two CRC bytes are
written to the disk followed by one byte of ones (OFFH).

In the Geminl DDDS, QD35 and QDDS formats, there Are ten sectors per track and
consequently the pattern of ID blocks and dats areas will be repeated ten times
on the track but with differing sector numbers.

Hormally, the memory image of the track to be written during formatting would
look something like that given below; the values given conform to the IBM System
34 format. When ueing the FD1797 FDC, the index mark ie not required and so
Gemini have left it out together with the pre-index gap (gap &) and the OFGH
bytes. In the example memory ilmages given, the centre column contalns the datas
senE to the FDC while the right hand column shows the data written to the disk
surface.

IBM System 34 Format

Humber Hex walue of byte sent
of bytes ta FOC to disk
80 4E LE
12 Qo oo
3 Fé c2
1 FC FC i Index mark
50 4E LE
» 12 ili] i 1]
* 3 F3 Al i Besets CRC generator
1 FE FE i ID Address mark
* 1 Track Ho Track Ho
» 1 Side Mo Side No
* 1 Sector Mo Sector Mo
1 o1 01 ; Bector Length (256 bytes)
- 1 F7 CRC1
Ll CRCZ
" 22 LE LE
. 12 1 1i] 4]
" 3 F3 Al } Resets CRC generator
L 1 FBE FB t Data Address mark
w 256 E5 E5 ; Empty Data area
" 1 Fr CRC1
» CRCZ
* 54 4E 4E
bl j98 LE &E

#* Write this field 26 times.
** Continue writing 4EH until next index pulse received
{Physical end of track).

By contrast, the track format for the Geminl QDDS format is given below:

Gemini Format
Humber Hex value of byte sent
of bytes to FDC to disk
32 4E 4E

* 12 0o 00
b 3 F5 Al ; Resets CRC generator
* 1 FE FE : ID Address mark
* 1 Track No Track No
* 1 Side Mo Eide Ho

29

* 1 Sector No Sector No

1 02 oz i Sector Length (512 bytes)
L 1 F7 CRCL

GREC2

w 22 LE LE

L 12 ao oo

& 3 F3 Al i Hesets CRC generator
1 FB FB ;1 Data Address mark

* 512 ES ES ; Empty Data area

& 1 F? GRC1

* CHC2

b 30 LE HE

) 31 4E 4E

* Write this field 10 times.
** Continue writi LE until next Index pulse received
{(Physical end of track).

As can be seen from the examples, there are gaps containing zero and/or 4EH
bytes between the ID blocks and data areas, before and after the index mark (if
present) and et the end of the track. These gaps are there to allow the FDC to
synchronize with the disk to read the data and ID blocks.

The gaps before the index merk and at the end of the track are known as Gap 4.
The gap after the index mark and before the first ID block is known as Gap 1.
Gap 2 separates each ID block from its mssociated dats area while Gap 3
geparates the data area from the next ID block on the disk.

The values of the bytes used to create the gaps are different for single density
and double density modes as are the number of bytes used. Below is an extract
from the manufacturers data sheet for the FD1797 showing the byte values and
byte counts for the gaps. The values shown for the byte counts are minimum
except where shown.

Single Density Double Dansity

Gap 1 16 bytes FF 32 bytes &E
Gap 2 11 bytes FF 22 bytes 4E
L 6 bytes 00 12 bytes OO0

3 bytes Al

Gap 3 10 bytes FF 2§ bytes 4E
LA 4 bytes 00 8 bytes 0O

3 bytes Al

Gap & 16 bytes FF 16 bytes 4E

+ Byte counts must be eéxact.
% Evyte counts are minimum except exactly 3 bytes of Al must be written.

The physical deta i3 held on the disk surface as a serial data stream. In double
density mode a 250n5 pulse is sent to the diek drive for each flux transition.
This would imply that a pulse is sent to the drive #ach time the data changed
from 0 to 1l or 1 to 0. In addition to the data, a clock is recorded on the disk
surface. This clock is picked off when reading the disk to synchronize the data
being read. The presence of a clock on the disk is used to good effect by the
FDL797 wvhen sending control bytes to the disk.

As seen in the example track formats, byte values of OFS5H and OF6H generate the
values DAlH and OC2H on the disk surface. However, so that these bytes can be
distinguished from data bytes of the same values, clock pulses are deliberately

30

missed out by the FDC. In fact, when sending the OAlH byte, there is no clock
pulse sent between bits &4 and 5. Similarly, when sending the OC2H byte, the
clock pulse between bits 3 and 4 i3 missed.

In single density, warlous other clock pulses are missed when sending control
bytes to the disk. In the table below, when sending a data byte, if all 8 clock
pulses associated with that byte are present then the clock can be considered as
having the value OFFH. A missing clock in any position may be represented by a
gero bit in the clock byte. The table also shows the values written to the disk
for the valuea sent to the FDC,

Eyte sent Single Density Double Density
00 to Fé Write 00 to P& with Clk=FF Write 00 to F&
F5 Hot allowed # Write Al, preset CRC
Fé Hor allowed w* Write C2
F7? Generate 2 CRC bytes Generate 2 CRC bytes
FA to FB Write F8 to FB, Clk=C7, preset CRC Write F&8 to FB
FC Write FC with Clk=D7 Write FC
FD Write FD with Clk=FF Weice FD
FE Write FE, Clk=CT7, preset CRC Write FE
FF Write FF with Clk=FF Write FF

* Missing c¢lock transition between bits & and 5.
#® Migsing clock tramsition between bits 3 and &.

File gsizes, disk sizes and directories
Having well and truly takén a disk to pleces, we can at last return to CP/M and

the questions asked at the beginning of this article., (Can anyone remember what
they were?) Well, you'll have to wait until the next episode.

A Look at MultiNet2 by P.A. Greenhalgh

MultiNet Design Philosophy

The aim of Gemini's MultiNet networking system is to provide computing
facilities to a number of people for the minimum possible cost. As a very
significant proportion of the cost of any trite- is in the méss storage and hard
copy devices, the overall cost of a multiple system installation can be
dramatically reduced by allowing a number of users to share these facilirvies.
*Share’ in this insctance means the ability for any user to be able to make use
of the mass storage device, but mot, in general, the sharing of the stored data.

CP/M Compatibilicvy

As Gemini MultiBoard systems are all capable of running the CP/M operating
system, and given the amount of applications software available for that
operating system, MultiNet is designed to provide a CP/M ‘“compatible’
environment, the major difference being that the user need not have physical
disk drives present at his Worksctation, but the MultiNet software refers all
disk requests to a Fileserver.

To achieve this, software has to be written that looks to the applications
program as though it is CP/M, but in reality this software contains no disk
driver or file handling routines, but instead refers these to the Fileserver
that is controlling the mass storage. To achieve this the relevant CP/M
documentation is used to write software that meets the given specifications as
closely as possible, given the major premise that there are no physical drives
present. Unfortunately, in practice, it is found that cectain programs make use
of certain "quirks’ or "undocumented features' of CP/M, and so the emulaticon
software has to be modified in order to provide as identical an environment as
possible. It is thus extremely difficult, if not impossible, to achieve 100 per
cent compatibility.

j1

HultiNet 1 to MultiNet 2

The original MultiMet 1 software achieved an extremely high level of CP/M
compatibility, but ower the 2 years that it was svailable certain anomalies were
brought to light. 1In addition & number of possible enhancements became
apparent, and so MultiNet 2 was introduced to improve the CF/M compatibility of
MuleiNet and to provide additional facilities. It is available from Gemini

dealers.

SERVER Changes

Auto-serving With MulriNet 2, the Server will sutomatically start-up network
operation, unless within the first few seconds the user depresses a key on the
Server, in which case it becomes available for maintenance purposes or stand-
alone use.

64K system If Server load is deliberately aborted then the user is presented
with a conventional Gemini 64K CP/M environment, as opposed to the special
buffered system that the network software runs under.

Larger Winchesters The maximum possible number of MultiNet users is increased to
94 to allow the use of 3 logical drives (i.e. Winchesters up to 3 x BMBytes = 24

MBytes).

SCreen respo All Server screen updates are now done using direct
screen addressing to speed system operation.

Free space digplayed The amount of free space on the Secver drives may
optionally be displayed on the Server display.

gggg;;ng_ggiggig The Spool gqueue length (i.e. number of files awaiting printing)
is always displayed and is updated whenever the length of the queue changes.

Additional Server features
An operator is now permitted to perform certain functions on the Server while it

is in operation. These are all initisated by typing <ESC> followed by a Comtrol
character.

<ESC» Ctrl B Broadcast Message
<ESC>» Ctrl C Initiate system closedown
<ESC> Ctrl D Display Directory space

Broadcest Message

The operator may enter & message of up to 50 characters to be broadcast to
selected {or all) stations that are currently logged on. Once the message is
set up, the operator is prompted to enter the numbers of the Stations that are
to receive the Broadcast. If the character "A" is encountered, it is understood
s ALL, and all logged in Stations will receive the broadcast. An asterisk 'v
is placed on the Server Logon display between the Station no. and User no. to
indicate that the system is waiting to broadcast to that destination. At this
time the screen display is altered to indicate that broadcast is in progress.
When the broadcast has been accepted by an individual Station, the **' on the
Logon display is changed back to a *." as normal. When all specified Stations
have accepted the broadcast, the bottom portion of the screen is cleared and the
Server is ready to accept further keyboard commands,

It is important to note that as the user stations cannot accept "unsolicited’
network messages, the broadcast can only be sent when the Station next sends a
request to the Server. Thus if a Station is left logged on but unused, it will
not receive the broadcast. This is the reason for putting the "*' into the
Station logon display.

System Closedown
It is now possible to control the shutdown of the network. The following options

are available:
1} - Shut-down immediately. In this instance all Server buffers are flushed,
and Server operation is aborted. A confirmatory “¥Y' is requested.

iz

2) - fhut-down after last log-off. No new logon is allowed, and shut-down
occurs when the last user logs-off. If a print spool file is in progress
this will be aborted and spooling of that file will commence again, from
the beginning, the next ctime the network is run.

3) - Shut-down afrer last log-off and end of spool file. No new log-on ie
gllowed. Spooling continuea. When the last user has logged off the file
that is being spooled at that time is completed, and then Server operation
is aborted.

4) - Shut-down after last log-off and last spool-file. No new log-on is
allowed. S5pooling continues. When the last user has logged off ALL espool
files are printed, and then the Server operation is aborted.

5) - Ignore this shut-down request, and return to normal Server operation.

As soon as the first <ES5C> Ctrl € is hit, all NEW logons will be refused, but
HDOS Function 41 (User Logon) will be honoured to allow user area changes,
providing the station is already logged on

Once a Closedown option Z2-4 has been selected, an auvtomatic Broadeast ls set up
for all logged in Stations, informing them that the system is about to close.
The absence of a '*" on the logon display indicates that the Station has
received the broadcast. This automatic message may be re-sent by enterin
"*¢ESC> Ctrl C' to restore the Closedown menu, and then reselecting the requir
option.

Display Directory Space
This shows the number of directory entries free on the Server drives.

HDOS Calls
Mew function calls have been added for use from Workstations and Superstations:

Function 51 - Return Free Space on Server Drives

Function 52 - Return Count of Free Directory Entries on Server Drives
Function 53 - Return MultiNet Station Logon Vector.

Function 54 - Heturn Spool Queae Length

Function 55 - is Reserved for internal use by NDOS

Function 56 - iz Reserved for internal use by NDOS

Function 57 Eeturn Current User Logon Number

H BROADCAST
Both Superstations and Workstations may receive Broadcast messages. These will
appear In the top three lines of the screen display, and all operation will be

halted until the message ieg acknowledged by pressing the <ES5C» key twice.

L DO N R T |

PASSWORDS
When a user responds to & request to enter a Password, the entry that the user
makes is no longer digplayed on the screen.

Bew Dtilicies

SETBOOT

This is eguivalent to the standard Gemini disk based CONFIG program, and it may
be used to set various user options inm the Workstation boot file, such as
defaule LIST device, serial port parsmeters (baud rate, data bits erec), auto-
execute File etc.

cu

This utility may be used to display various information on the current status of
the network. Options include: Space remaining on Server drives. HNumber of
directory entries available. Current ugers on the system. MNumber of files in
the print spool queue. Current and original user number and station number.

MAIL

This utility allows messages or files to be sent by any user to & “postbox” for
receipt by another specified user. It also allows that user to recelve any
items that are in the “postbox’ addressed to him.

33

Letters to the Editor

Bcorpio News readers may be interested in & current Hirage-driven project. This
is called FFPF. It is not a sign of incontinence but stands for Fascal Program
Porti Project and is aimed at those who have written marketable programs in
extended Pascals (5VS, Turbo, MT+ or UCSD for example) and who would like &
larger market by porting to Mirage wia its excellent ifte-Pascal compiler.

Straightforward code presents no porting problem to & multi-user environment and

only the file-handling routines need to be re-written to use either Mirage's
8 Manager or the ISAM file processor. Forted pru,rl-l may either be

marketed by their authors or by Sahara Software together with Marston Spurrier.

Projects currently underway include the port of the Omnis 3 database manager
from the IBH AT environment and two CAD packages. It would be very interesting
to port some BO-BUS software which used the Pluto boards to the Challenger using
the new range of GBE-BUS graphics boards. Anyway, I would consider most things
and London-based programmers could use a terminal on my Gemini Challenger system
for devalopment work.

Hick Spurrier, Marston Spurrier, 10 Ransome's Dock, Parkgate Road, London SW1l.

TINGE OF SADNESS

Ed. - This letter was received by 80-BUS Hews after ite imminent demise had
eén announced. It was passed to David Hunmt to write a reply. At the time
David was running the Computer Section of Henry's Radio, a London besed Gemini
and Nascom dealer. Both the original letter and reply are now published here.]

19th April 1986 Shirley
folihull
West Midlands

Dear 80-BUS News,

With my final, one-issue subscription, there is a tinge of sadness about
your demize - & sadness which also accompanied cthe end of the uP MNascom
Hewsletter. Looking back at the years between Hascom 1 and this funereal
occcasion, it i possible to state that all the BD-BUS adherents must have
achieved & great leap forward in their knowledge and experience as the result of
our contact, and that the nation as & whole must have benefited, both
economically and educationally.

Where these benefits to the individual and the system have been greatest is
in having encouraged exposure to machine code and electronics, with the result
that many enthusiasts have gone on to develop these interests on other
computers, from ‘micros' right up to mainframes.

Hascom originally stood in the almost unique position in offering a falrly
sophisticated and eminently communicable board to the unskilled public; the pity
is that its origimal high cost never came down with the reduction im chi
prices, which encouraged other board producers to "hike-up' their prices, an
also that the original board nor its add-ons ever advanced into boards organised
through ULAs, or with the additional lines needed for extended memory
addressing.

Having complained previcusly, in several publications about the urgent need
for 8 simple board with 80 column display but otherwise software compatible
{with the Nascom?? - Ed), I would like to say again (and obviously for the last
time): our [Nascom customers'] investment in Nascom and Gemini products now
stands at somewhere around £4,000,000 (original boards, add-ons, disk drives,
software and firmware); it is a tragedy that much of this investment will go to

34

waste. A new board is still a viable proposition, provided that it is a bare
board, and given some cooperation from existing copyright holders to provide (or
¥ire permission for) software modifications which allow existing users to carry
orward most of their existing software and firmware investment. How about it
Geminl and Lucas?

My final appeal is that the final issues of B80-BUS News should be spent on
as much hardware/software information as can be contained between their covers,
since this is the last opportunity, leaving no spare room for humorous anecdotes
- the world's a funny enough place already.

Yours faithfully, Bert Martin.

P.5. How about asking all subscribers if they would like a full list of names
and addresses?

DAVID HUNT'S REPLY
Hay 1986
Dear Mr. Martin,

Thank you for your letter, it's been {ﬂlﬂld to me by Paul, probably because
he thinks I may be able to give & more objective answer, drawing on my wider
experience of the home computer business, covering scenes from behind the shop
counter, playing at design engineer (what I was originally trained as) and as
gsupporter of the home computer cause. I have not confined my discussion of your
letter to the above but have also reread your letter published im B0-BUS wol 3.
izz 3. page 6.

Overall, I feel in general agreement with your first two paragraphs, as I
for one have most certainly benefited from the original conception of the Mascom
1, through the Nascom 2 and then through the ever growing number of Gemini
components. As these machines have grown in power and complexity, so I have
learned to come to terms with them, both in design and software implicetions.
This, to me, has been something of an uphill struggle and has involved the
personal investment of many thousands of hours. not to say money in acquiring
the machines in the first place. Ok, I did end up with a free Mascom 2 from the
Company, but most of the rest has been purchased over the years at only a little
more advantageous price than that paid by most other people.

This investment in timeé and money is at last paying off, as I shall be
starting & new job in June which I can honestly say is directly attributable to
the knowledge gained by close and diligent learning from these machines.

In 1977 1 knew nothing about computers, they only taught me a smattering
about digital logic when I gained my HNC in the mid-sixties, and most of this
study was more applicable to buildipng power stations than computers. HNascoms
were the start, followed by Geminis, and now (dare I say ic), IBMe, Vax's and
68000 machines like the Gemini Challenger and Prime. It has to be recognised
that in the field of computing I am almost totally self taught, with a little
{but invaluable) help from friends I have made along the way. By the time
technical colleges woke up to the fact that people wanted to learn about micro-
computers, I was sufficiently ahead of the field to be approached from the point
of view of being a night class tutor rather than a student. (I have turned
those offers down and continue to teach the RAE at Paddington College, an
altogether more s$ane occupation.)

S0, yes I can agree that the early (and more recent machines) have been of
considerable help to me, and I'm sure to many others. I feel it's a bit strong
to claim these benefits on behalf of the country as & whole, but to me, yes,
there have been benefits.

35

I'm sorcy, Mr. Hartin, but it's about here that our opinions start to
differ. I don't know your profession, but I would guess it's not Iinvolved with

either electronic manufacture or retailing.

Agreed, the Nascom was uvnigque, being in advance of its time and aimed at &
totally {in this country) untried market. Its virtues were simplicity (relative
term) and the fact it was supplied as & klt. But was not its success due to
more to its uniqueness in the marketplace rather than the fact that it was
communicable and supplied as & kit? In the beginning there was Nascom and no
other choice except either &8 much simpler machine (the original the Cambridge
777 (you know, the thing before the ZX80)) [Ed. MEL477] or the machines belng
published as serials in the electronice mage at the time which were almost

totally diy.

The original high cost was brought about by the need to amortize the
original development cost and not the cost of the chips employed at the time.
The fall in chip prices was reflected by & price reduction in the Nascom 1 a
year or so after its introduction. Also I can think of no examples of board
manufacturers ‘hiking up® prices in line with the Hascom. All manufacturers are
faced with the same problem, the need to recoup the cost of a design. The
material cost of the finished product usually has little relation to the final
gelling price. Most other computers started life priced falrly highly and
prices fell as the costs were recouped {(ignoring the dumping of product which
did not sell at all).

Mext, Sic, you imply the lack of progressive design and by so doing
contradict one of the main wvicrtues of the Hascom. One of the main reasons that
the Nascom was ego sdaptable and of such value in (self) educationm was the very
fact that design was NOT stuffed into m ULA. Apart from the fact that ULAs were
only just becoming available at tha time the Hascom 1 was designed. ULAs arae
marvelougs things from a mass production point of wiew. But you can hardly get
ingide one with a soldering irom and bend the original designers’ ideas towards
your own. Secondly, ULAs are extremely costly to develop and to gain benefit
from their use, a market must exist in hundreds of thousands or even millions.
The Nascom sold in cthousands, but never snough to make the use of ULAs wviable.

Gemini have compromised a bit, they tend towards specialized PROMs and PALs
in their designs. This saves 8 lot of chippery and by s0 doing simplifies board
layout. Again Gemini boards sell in gquantity, but not enough to make ULas
viable. Also, Gemini I think must know that they ace a specialized markec, and
even the introduction of PEOMe places restrainte upon the flexibility of the
boards. I wonder 1f you have looked inside an Amstrad PCWB256, it's only got
half a dozen chips im it (excluding eight RAMs) all centered around one postage
stamp sized 99 JEEFEd beast in the centre. Marvelous from s manufacturing point
of view, it even keeps the accountants happy. But you've got to aim at making
1,000,000 of the machines to make it wviasble, and heaven help anyone who wants to
personalize an Amstradl

And so to extended addressing. There is & craze at the moment to endow the
B0 and the 6502 with 12BK, 256K, 512K or even a 1M of addressing capability.
But what can you do with it? No application sofcware for micros is ever wricten
that big, and no individual in a Hascom/Gemini context is ever going to write
anything bi%F-r than 60K because the market is too small and even smaller for
the few Geminis ficted with 256K RAM cards actually used as RAM. It's the
numbers game|l I've got something bigger than you - never mind what you do with
itl The only sensible thing to do with this amount of RAM is to use it a
virtual disk. Geminl have done both with the GHB13 with its extended addressing
and their 234K BAM card and the 512K silicon disk. But I often wonder if it was
worth the effort. Don't forget, to use this RAM, you must have application
software to run in it and loading 128K from tape will take all day, and disk
software has to be applicable to machines which don't necessarily have this
address range, so what's the point? Ok my mechine has & 512K wirtoal disk but I
hardly ever use it, and something like the Amstrad only uses it as wirtual disk
because it's only got one drive and it was cheasper than fitting & second.

36

Mo, I'm sorry Mr. Martin, but I don't agres that the development of the
designs was hampered by the lack of use of UlLAs or that prices were particularly
high, also extended addressing is available on more recemt carde - for what it'e
worth. You forget that the Nascom was a epecislist machine manufactured in
relatively small volume for a 'ltg;lpl:lll market. Tts initial success was
probably not due to its design but because it was available. Tts decline can be
directly related to the advent of the poorly communicable, un-tailorable and
boring plastic boxes (Sinclair, Acorn, Dresgon, et al) which did little for the
appreciation of the hardware but were in the main originally intended to sell
vary clever games software to an unsophisticated market. These machines are all
less tractable than the Nascom and Gemini, but then, they are manufactured to
satisfy a superficial need or whim (if you will) for gimickry in our present
society and not really to engender an understanding of what actually makes them
tick. I wouldn't mind betting that 90 of home computers sold over the last
four years are now collecting dust in some forgotten cormer as the owners have
no idea what to do with them apart from playing Space Invadera.

And so on to the MOCSAN, your plea for an unpopulated board for a single
board computer to use the original peripherals for Nascom and Gemini and if
possible to use the original chip components. 80 column digplay but otherwise
software compatible with the Nascom.

Firstly you speak as if, with the demise of the 80-BUS magazine, all
components and future expansion for the Nascom and Gemini through the B80-BUS,
will cease to exist. THIS 15 MOST DEFINITELY NOT THE CASE. I know full well
that you have not attended Gemini dealer meetings, where various peocple, most
notably John Marshall, the MD, have repeated ad nauseam that there is no
intention of phasing out the E0-BUS components untlil well into the nineteen
nineties, although work on future products, most notably the development of the
68000 based Challenger series will reduce the dtuiin effort devoted to 80-BUS.
In fact, it has been hinted, there are some sucprising developments forthcoming
in B0-BUS products in the near future. (I have no idea what these are, as I
consider that all that needs to be available for BO-BUS is already available.)

I would argue that a new board is probably not wiable ae my close
rgociation with the current market suggests entirely contrary conclusions to
~woge you cite for the wiability of the board.

Firstly, the kit market (for anything, be it computers or single transistor
sudio pre-amps) is rapidly declining. It is now cheaper to buy a fully working,
built item, than to build it yourself, Ok, the bullt item may not be entirely
what you want, but the electronic buying public as & whole are not prepared to
pay the money for a kit which does exactly what they want. I know, because my
Company and many others have tried to revitalize this market, and it's just mot
there. Go and ask any retail components supplier. This decline in the kit
market obviously affects the price of discreet components, forcing the price
spiral upwerds whilst depressing the market it is supposed to generatea.

Hext to the need for a single board computer itself, there have been
several attempts to introduce new single board computers on the home market.
Someé even fulfilling the major parts of your specifications, and some very
reasonably priced. Do you remember the 'Big Board' or the Multitech MPF-1T7
Mo, the demand for & board computer has declined as the majority no longer want
a single board computer without a box. Thies leaves the board market to the
specialist manufacturers who supply to a special market. That market is no
longer the home user, it is more likely to be system designers making modest
guantities of dedicated machines for special purposes, things like credit card
embossing machines, automatic packaging machinery, lamp bulb making machines,
etc. The large majority of boards now go in that direction.

Let's look at the profitability of producing a bare board to a new design.
The costs are enormous. The board is unlikely to attract buyers at more than
£20.00, yet to design a new machine to supply a potential market of a few
hundred such boards, the individual board cost is more likely to be three times
that. The £20.00 would only gull cover the manufacture of the board yet alone
the cost of development, drafting, board menufacture set up costs before you

ar

start. And who is going to puy for component procurement, and a "get you going'
service after it's built? Mo there's nothing in it for a potential manufacturer
- believe me, if there were, they'd have done it long ago.

S50 the final answer is to "do it oneself’, where the cost of the time taken
to achieve an end is not considered se 2 materiasl part of the costs. If I
considered the cost of the time which I have spent in designing one off projects
for my own use I would never have started them in the first place. Certainly if
someone offered me one of my one off projects at & realistic price I would have
certainly done without and not bought it.

I don't consider myself as an unusually mercenary individuaml but I do like
some (token) reward for my efforts, and in that I don't consider myself unusual.
Hany things are undertaken for the pleasure in doing them (I don't write for
this mag for the money, I'll never get rich that way) and the rewards need not
be monetary. But I personally think that your MOCSAN appears to represent a
very considerable amount of hard work and i1f it is to contain ULAs, then also
prohibitively expensive, certainly not something to be undertaken for fun. IE
it isn't fun, then someone (or many) will expect to get paid, and the projected
price will go out of the window. No sorcy Bir, it's & nice idea, but to me,
it's not on. Perhaps T am & minority, I'd welcome other wiews.

D. R. Hunt.
(Reply written HMay 1986, re-edited Dec 1986)

A Review of the 2MB Upgrade for the GM833 by D. Greenfield

The Gemini GMB33 Virtual disk board has proved wvery useful for over two years.
When this board was first used, it seemed that it would never become full.
Could it be that software iz more sophisticated, or is it just less efficient 7
Anyhow, "Disk Full" or "Write Error Drive M" started to rear its ugly head.

It seems that a virtual disk drive must have at least the capacity of a floppy
disc on the system. Preferably it should have a lot more, at least 50I more as
a lot of temporary files are produced during working.

The PBM upgrade for the Gemini GMB33 board was fitted to the GMA33 inm about an
hour, This upgrades the GMB33 to 2MBytes, & times ite original capacity. The
Eit comes as a small pcb, wire, 41256 memory ICs, instructions and double sided
gticky tape to hold the small Pch to the malin board. Everything went well an
the modification, the instructions were reasonable, although an actusl photo of
the board would make component locatlon easier. HNo tracks are cut, thank
goodness. 8 wires are used to connect the pch to the main board at various
points. Pin 1 of all the memory ICs were connected together. This provides the
extra address line required.

Evervything seemed fine, on startup, the HM> prompt displayed as usual. Running
"STAT" displayed *2024K Bytes Free®. Howewver, on lunding more than 512K, the
system failed. It seemed that the same 512K was "reflected” &4 times on the
board. A phone call to FPBM systems threw light on the problem;, two of the
solder pins had bridged with solder under the board. Removing this fault
resulted in correct operation. The board has been running correctly since.

To conclude, the board represents good walue. With care of soldering, the mod
is easy to implement.

3a

Doctor Dark's Diary - Episode 24

Just as I was about to start my own Nascom fanzine, duplicated badly, and
printed on grotty paper, the leaflet advertising Scorpio News arrived. I was
delighted to see it, and posted my subscription the same afternoon. After all,
I guspect publishing is jolly hard work, and I bet this gets printed on decent
guality paper as well. Besides, I would have needed the address list of the B0-
BUS subscribers, and something to print...

THE STORY SO FAR

For the benefit of the many who have never heard of me, and have not read the
previous 23 episodes of this column, now appearing in its third magazine, I am
an enthusiastic amateur computer owner. I am enthusiastic because the machines
we all have in common are so good, compared with the other stuff on the market.
And 1 am an amateur because there don't seem to be any computer firms with the
sense to offer me a job in this neck of the woods.

1 started out with a Hascom 1 kit, which amazed me by working after I had built
it. I learned to program from the Nascom 1 software manual, which is no mean
feat, as this document was designed to prevent pecple from wanting to use their
Mascom ls. By the time I had finished my machine code biorhythm program, and
typed in the hex using the monitor program, I was hopelessly hooked. As the
various expensive new boards appeared, I expanded the machine, changing to a
Hascom 2 when the WHascom 1 refused to run at &MHz (I know, lots do. HMine
wouldn't.) The system this is being written on consists of the following:
Nascom 2, Nascom B amp power supply, Gemini GBO9 disc drive controller, two
Fertec FD250 drives, a Fluto graphics board, a Gemini SVC, ewo MAP-80 256K HAM
boards, & Gemini GHMETO modem board, a Belectra floating point board, and a
Hascom I0 board. There sre three screens, one for the Pluto, one for the SYC,
and one for the Nascom 2 screen.

Lenguages in use are ZA0 sseembler whenever I want things to go particularly
fast, BASIC when they can go slowly, and nobody is going to know, Pascal when I
am writing something large, with fancy data structures, and C when I am in the
mood for some suffering and can stand the vgliness of it. For instance, my
current project, some Prestel software, is being written in assembler., in the
hope that it will go fast enough not to need fancy queuves of data or horrid
interrupt driven software. I was originally going to write it in Hisoft Pascal,
but changed my mind because I thought it might not go quite fast enough, and
because I would have had to plan everything frﬁglrl}. I declded against C for
the simple reason that I don't feel I know it fully yet. (Has anyone seen a
book that explains anonymous data types properly?) The reason I didm't us
BASIC, is that it would newer have run properly...

Mow all that must sound {I hope) wery competent and educated. Fooled youl We
sixth form dropouts sometimes recover from thinking we can not learn new tricks,
you see. In 1978 I knew none of these things, but am now half way to an Open
University degree, mostly in maths. One of these days, with the help of the
escape committee, I hope to escape from my boring job and have some fun doing
something interesting with micros. And that is quite enough about me. Now read
Ofa s s

HARDWARE UNFLEASANTNESS STRIKESI

As iz well known, the Gemini GHMBTD MODEM board and the Belectrs HSA-88B floating
point board both use port addresses £80 and £81, so I can not use them both at
once. In theory, it is possible to move a link on the H5A-88B, and have it work
as other ports, but (again) mine won't. I am planning to build some sort of
decoder to select between the two boards, if there isf no other cure, but not
unless I have to.

The main reason I described interrupt routines as unpleasant above is that the
last one I wrote, several times, refuses to work. It tried to use the CTC chip
on my Nascom I/0 board to interrupt the system regularly, in order to read the
MODEM's input port, and queue up any input. However, the program just will not

39

run, even though similar programs written when the system waeg much emaller
worked well. Even more interestingly (I probably mean disgustingly), the system
refuses to work at all without the I/0 board. I suspect that either the
motherboard is just too long for all these boards, or that there is a fault on
the motherboard affecting the I/0 control signals or the address bus. I meant
to replace the mother board with a decent one ages ago, as it is just Vero
board, but never got round to it due to the cost of the good ones. Any dealers
got & Microcode 14 slot board left? [Ed. - see the Wewburn advert. They hawve
now taken over production of this board.]

I have read and re-read all the verious manuals, and am fairly sure all the
boards are et up correctly with regard to B0-BUS signals such as NASIO and
DBEDR, which is an exercise I recommend for anyone who wants to test their
patience and comprehension. My decision, until such time as I decide to pull
the system to hits for maintenance, is to ignore all these problems, and program
round them. Hence the need for assembly langusge speed in the Prestel software,
in order that all the routines will be completed before incoming data has been
lost. And if the Pluto board keeps the system waiting, I suppose I will just
have to get the double speed processor option fitted, even if it is a silly
price.

HISOFT ©, DOES IT HURT?T

Mo, it doesn't hurt your pocket, just your head. For very little money you get
a good manual, a good screen editor and a good compiler. But the language
iteelf rivals Forth for unreadability. (I know, you can write Forth so that
other people can read it, but who actually does?)

The manual contains 2 quite helpful tutorial section, and the editor is
excellent for programming use, 88 it has all the handy facilities like auto
indentation. It will nmot do justification though, or word-wrap, like your
favourite word processor. The really clever bit comes when the compiler finds a
mistake in your C program. It re-enters the editor at or near the error, for
you to fix it. Exit from the editor., and the compiler has another try. I like
this, it saves s lot of the time usually spent giving commands to the compiler
and editor on other systems! (I belleve the newest wersion of the Hisoft Pascal
compller also does this, and will let you know when I get mine updated.)

The version of C implemented has no floating point numbers at all, just
integers, which is a pity. It fs m surprise too, given the good floating point
support in the Pascal compiler. I just hope they will be doing a version for
the Belectra board, as well as an ordinary Z80 wersion, when they do add floats.
The system as supplied, and the programs it compiles, certainly work, and I am
finding them helpful in my attempts to learn yet another language, but it is not
i pretty languagel

PRESTEL ON PLUTO

Az mentioned above, I am writing & Prestel program to put & display on the Plute
board, instead of using the useful "Pretzel I1" I bought with the MODEM which
uses the SVC (or an IVC) for ite display., When finished, this will have quite a
few fancy facilities, which would normally make it well worth trrin% to market
the program. However, how many people have compatible herdware? If either of
them is interested in a copy, they can contact me to arrange a swap for some
Pluto program of their own writing. ﬁnything pretty, like Mandelbrot set stuff,
or flight simulators, would be most acceptable...

STOP BIT

Correspondence about any of the above can be sent either to the Editor, if you
want him to do something about it, or to me, Chris Blackmore, st 27 Laburnum
Street, Taunton, Somerset, TAl 1LE. Sometimes I fsil to answer lettera. Nobody

is perfect. Although I do have a telephone, I actually dislike using the things
to speak to people, and would prefer not to be telephoned unless it is to offer

me an amazing free gift or something!

40

A Beginners’ Guide to 1/2" Magnetic Tapes by Timeclaim

[Ed. - Az well as using their Geminil Multi-Format (M-F-B) Systems for
transferring files between many different disk sizes and formats, a growing
number of users are also using them for transferring data to and from 1/2°
magnetic tapes. This article is an extract from the manual for Timeclaim's 1/2*
magnetic tape sub-system for the H-F-B amd describes some of the basics of 1/2°
tapes. Our thanks to Timeclaim for allowing us to reproduce this documentatiom,
which is copyright (c) Timeclaim.]

Introduction

172" Computer tape comes on plastic reels which are usually kept in a plastic
box or with a strip of plastic round the & for protection. The diameters of
the reel are 7*° (holding either 300' or 600' of tape), 10.5" (holding 1200" of
tape) or 12" (holding 2400" of tape). The centres of these reels are the same
so that they all fit the same tape drives. (History will reveal some exceptions
but these are almost never seen today).

Tracks
Tapes are said to have % tracks because the recording head consists of 9

sections one above the other. All tracks are recorded at the same time unlike
tape cartridges which usually are recorded one track at a time. There are some
old 7 track tape machines about but these are rarely encountered.

Density
ogress has meant that the density of dats recorded on tape has been lncressed
over the years. The densities seen nowadays are as follows:

800 bpli NREII (Nom Return to Zero Inverted)
1600 bpi PE (Fhase Encoded)

3200 bpi PE . "

6250 bpi GCR (Group Coded Recording)

The density refers to the number of bits per inch on each track. As one
complete byte is written at & time (with the 9 head sections) the number of
vtes per inch is equal to the number of bits per inch. In the above table it
.11 be seen that there are some further letters. These describe the method by
which data is recorded on the tape. This information reslly needs to be known
only by the tape deck sngineers.

BOO bpl tape are almost obsolete in the data processing world where there i &
need to store a greakt deal of data on & tape. However, @many
CaD/Engineering/Scientific users seill use B00 bpi as they do not usually need
to store so much datm. Often they will only use the first few feet of tape on a
7" reel.

1600 bpd has become the data exchange standard. Most tape decks can read and
Hritﬁ at 1600 bpi so this ls how data is usually transported from one system to
Anothner .

3200 bpi. This is a double density version of 1600 bpi. This densicy is
usually quite & cheap add on for 1600 bpi tape decks but ig almost never used
for data interchange. Systems using this are fairly unusual.

6250 bpl. This ls the latest development in 1/2" open reel tape and is coming
into use at many mainframe computer sites. Most 6250 bpi drives will also read
and write at 1600 bpi. 6250 bpi drives are much more expensive than 1600 bpl
and are not available in some countries.

Data Layout on 1/3" Tape

Data is written onto tape in one complete 8 bit byte at & time. The 9th track
i used for a parity bit which is dealt with automatically and is not seen by
the programmér. A number of bytes on a tape are grouped together into a block.
Blocks are separated by gaps in which no data is recorded. These gaps are from
0.6 for Phase Encoded tapes to 0.75" for NRZI tapes. Blocks cam g: any length
but blocks shorter than 11 to 14 bytes are not allowed. The actual minimum

41

block size depends on the individus]l computer syatem. The maximum length of a
block is limited only by the avalilability of memory to hold the block in the
computer. To identify a block on Fhase Encoded and Group Coded Recording thers
is a preamble before the block and a postamble after the block. These are
recorded so that the machine knows where a block starts and where a block
finishes. Blocks are not numbered nor is there any record of their length. The
gystem works out the lemgth of a block by counting the number of bytes cead
between the preamble and the postamble.

EOT/EQT

g beginning and end of the data area of the tape are identified by a piece of
reflective foll stuck to the vape. Thie fis seen by photoelectric sensors when
the marks pass. They are known as the BOT (Beginning Of Tape) and the EOT (End
Of Tape) markers. When the tape is first loaded (on the tape drives) the tape
is automatically moved so that the BOT mark is in front of the photoelectric
sensor. The first data block is located & short distance after the BOT marck.
Blocks are written one after the other separated by gaps. The purpose of the
gap is to separate blocks so that the blocks may be used one at a time.

ark

In order to divide the tape into files a special type of block is recorded -
this is called & file mark or tape mark. The file mark does not contain any
wgeful information. It is just a place marker. When & file mark is read a
gpecial signal is sent from the tape deck to the host computer. This usually
causes reading to cease. The file mark 1s used to separate files on a tafa. A
further use of the file mark is at the end of the data on a tape. Usually the
end of the recorded data on & tape is well before the reflective EOT marker. To
signify that there ie no more valid data on the tape two or more file mark
blocks ere written next to each other. 1If one f£ile mark is encountered and the
system is asked to read the next file and another file mark is immediately
found, with no data block being read, the system knows that it has reached the
end of valid data. Some systems write several file marks at the end of data for
good measure.

Adding Files to a Tape
When a file is to be added to & tape, the tape is positioned to the file marck

just after the last file. When recording restacts all of the extra file marks
are overwricten. At the end of the new file multiple file marks are written.

Headers, Volume Labels and Trailers

Az can be seen from the above, there is no directory system on a tape. It
merely consists of files recorded one after the other. This [s guite
gatigfectory for some applicacions when it is sufficient to stick a paper Label
on the tape reel to identify the contents. Most scientific and engineering
applications find this adeguate.

In commercial data processing departments where many more tapes are handled and
they are kept in big libraries a more formal scheme is required. A system of
Headers and Trallers has been developed so that each file in fact consists of 3
tepe files. The first is the Header, the second the dats file itself, and the
third the trailer or "End Of File header".

Each reel of tape is known as a Volume - just as with books. To identify the
volume the first header file on the tape has an additional record in che flrst
block and this is known as the Volume Label or Volume Header.

Another type of label that is encountered is the End of Volume. This iz used
when it is necessary for 8 file to continue on to another volume of tape.
Instead of an end of file header at the end of data, the end of volume label is
uged to signify that the file carries on to another tape volume.

The exact content of these headers varies from system to system. Standards have
been produced by ANSI, ECHMA, 150 and IBM. These are al]l similar in principle
but differ in detail. It will be found for instance that IBM use the EBCDIC
character representation Instead of the ASCII used by the others.

&2

Review of the MAP-80 Video/Floppy Controller by P.D. Coker

Cver the st few years I have been using an 80-BUS system in which the MAF VFC
card a8 tha video and floppy disk control normally provided by the Gemini
IVC/SVC and FDC cards. The card was one of the original versions and wase
supplied as a kit which was well documented and presented, and worked
gatisfactorily after a simple setting up of the FDC with an oscilloscope. The
VFC is supplied as a kit or resady-bullt, either as & video controller or £loppy
disk controller only, or with both facilities implemented; a keyboard interface
and video switch are optional for the video-only version but are included in the
complete VFC.

WHAT IT CONSISTS OF

The VFC card can be used in 3 ways; as a combined video and floppy diask
controller, as a video controller only or as a floppy disk controller (for 5.25*
or smaller drives only).

The video section provides & memory-mapped B0 column by 25 row display with &
highly readable alphanumeric character set; there is a facility to switch an
external video signal into the same monitor as the VFC, and the video cutput
level can be regulated with an on-board potentlometer. A 7 or 8 bir ASCII
keyboard can be accommodated by the VFC and there are both 'normal® and
*inverted’ character sets, half of which are left for expansion (for example, as
a games set) but stil]l leaving 512 alphanumeric and other characters for
immediate use.

The floppy disk controller will cope with any make of drive, apacc from B°.
Some criticism has been levelled at MAP Systems for this, but few users will
find it & limitation. Also included is 4k of RAM, 2K of which 1s used for the
digplay and the rest by the cperating software. It uses a total of 16 ports
which are link-selectable, enabling the user to choose any group of ad jacent
ports from €0 to EF; the default port allocations are from E0 to EF but
alternatives are suggested.

The board containe a standard 6845 CRT controller and & 2797 FDC; unlike the
Cemini IVC/SVC, there is no on-board 280 and the 2797 is &8 more sophisticated
version of the 1797 disk controller used on the Gemini GMB829 FDC/SASI board, and
is from the same family as the 2793 disk controller used on the more recent
Gemini GMB&4% FDC/SCS5I controller. All this is contained on & single B" sgquare
board which plugs directly into the usual B80-BUS comnector. Some care is needed
if the kit is constructed and an oscilloscope is needed to set up the 2797 - HAP
will do this for you for a small fee, but the construction manual is very good
and the average person would find little difficulty in producing a working

version.

There is a significant design difference between the two types of wideo
controller; the Gemini IVC and S5VC have & IBD incorporated on the boacd (ZB0A im
the case of the IVC and & ZB0B which runs at 6MHz in the SVC.) Effectively,
these are single-board, highly specialized micro-computers, whereas the VFC has
no microprocessor included and thus forgoes the benefits of parallel-processing.
For many applications this will not be & great disadvantage since the VFC
software is gquite sophisticated and carries our the task of interfacing betwesn
the VFC and CPU very efficiently so that most users would not be aware of any
difference in the performance of the VPC compared with the IVC. The SVC,
running at 6MHz, with faster screen handling, would appear to be different, as
Dave Hunt's brief test (BO-BUS News wol 3 issue 1) shows! The S5VC has a lot
more on-board memory ae well and a generally very impressive performance. It
also uses & high quality version of the 6845 (ite performance is degraded if the
standard wversion is used).

43

This is adequate and consists of a detailed explanation of the port allocations
and their functions, program examples for the imsertion of support for the VFC
inte a CP/M BIOS or interfacing the VFC with NAS-5YS, and details of the control
codes which the VFC recognizes. In view of the large number of possible
combinations of VFC and Nascom 2[/Gemini/MAP CPU or FDC cards, the implementation
notés are quite extensive., They are also easy to follow which makes a pleasant
change from some systems; unfortunately, no details are included for the Mascom
1l and I gather that there are difficulties in using the VFC with it. In the
full version, 15 or so linke are involved but not all of these have to be used.
Details are aleo given of modifications which need to be carried out if RAM
boards (Gemini and Nascom) are to be used. Mo modifications are needed if the
MAP RAM card is used. A final section gives details of pin sssignments on the
YFC and & useful note on TEAG, Pertec and Micropolis drive pin assignments.

If the fully implemented YFC or the FDC-only system is purchased, MAP-B0 Systems
can supply a fully licensed version of CP/M 2.2 or 3.0 with a customised BIDS.
This is supplied with a short instruction manual which explains how linkuteu are
made or modified on the various types of CPU cards, gives details of disk error
messages as well as how to customise the BIOS for other features. Both parallel
and serial printer output &nd screen editing using “# are supported. A special
boot EFROM is supplied which replaces the RP/M boot EPROM if the CPU card is a

GHB13.

In addition to the usual CP/M files on the disk, and the customised MOVCPH.COM
or CPM3.5Y5, g multi-utility program is supplied, which allows users to format,
verify or copy disks. MAP will also customise existing users’ CP/M on request
at a reasonable cost.

THE VFC IN D5E

The fully implemented card has two 3 pin connectors for the video input and
output, which are incompatible with the Gemini GMB812 IVC video ocutput which is a
standard jack socket requiring an enormous plug. Why Gemini use this gargantuan
means of taking out the wvideo zles me since Hascom found some small cosxial
connectors for their AVC Hhicgu:ri really neat, I'm not all that keen on MAP-
B0's connector either and I'm sure that there must be all sorts of impedance
mismatches since meither type is likely to approach 75 ohms or whatever a
moniter is supposed to need to produce & good display. The keyboard and disk
drives are plugged in to the board - using non-=latched ID connectors which are a
licttle difficult to unplug when needed.

On booting up, & system message is displayed together with the CPfM prompt;
commands may then be entered. The display is 80 columns wide and because of the
alternative character set, hoth normal or Inverse (black on white) characters
can be displayed, or an alternative character set which can be programmed into a
2716 or 732 EPROM and plugged into the second ROM socket.

The memory-mapped display appears to be gquite fast and free from visible
interference as a consequence of CPU and CRT controller interaction; as has
already been mentioned, the Gemini wideo controllers have 280 CPUs on board and
under certain circumstances on the IVC some interference can take place which
produces a faint diagonal patterning on the screen - which can be irritating
under some screen display conditions. The cause possibly lies in the layout of
the IVC board where one or two long-ish tracks radisted nolse which was picked
up by other parts of the system. This problem appears to have been resolved
with the Gemini SVC which has a much more legible screen display than its
predecessor.

I experienced no problems with the floppy disk controller when using Pertec (48
TPI) and TEAC, Canon or Mitsubishi (96 TPI) drives - which are plug-compatible.
The Mitsubishi drives were quietest in coperation. Some problems were
experienced when using 96 TPI Micropolis drives - I'm not sure why - perhaps
they objected to the fast track stepping rate which suits the TEAC and

compatible drives. The TEAC drives were rather noisy in operation, compared
with the cther 36 TPI drives. They are aven nolsier when used with either of
Gemini‘s FOCe. [Ed. - this is probably so with the early Gemini GHB809% FDC
board, but with the GHE29 and GHBAY boards the drives may :;u stepped at their
maximum rate (Im5). (With the VFC and GHB0% only &m5 is possible, which results
in the noise.) The GHBZY9 and GM849 glve wirtually silent coperation with Teacs.
You must either have the software set up incorrectly, or not have the correct
goftware (Gemini BIOS 3.2 or later).]

Mnfortunately, some software is pnot completely compatible with the VPC - which
is & nuisance; when I tried to use an IVC version of DISEPEN, I found this out
the hard way and had to resort to WordStar - which is (initially) a lot less
easy to use., A Sargon chess program with rather nice graphics ch worked on
the IVC (with a nasty frame wobble) failed to display any graphics at all om the
VFC - all one had was & cecord of the moves!

A version of DISEPEN is available novw (not surprisingly called HAP PEN) which
gects over one of my problems and some software hacking might possibly owvercome
the other problem - but it probably has something to do with the switching of
the IVC into its &8 character Nascom-lookalike mode which the VFC cannot do. I
suspect that the Gemini SVC would also not like my version of Sargon elther
since it now has & 40 by 25 display option. I don't play chess very often and
when I do, the machine beats me s0 the modifications needed are right at the
bottom of my list of priorities. Like most of the 9% of wideo controller users
mentioned by Dave Humt in his article, I probably don't use the undoubted
potential of either the VFC or the 5VC to their full advantage since most of my
work is concerned with nuomber-crunching and word-processing, rather than
graphicse. The instructions given are probably as comprehensible as those
supplied with the IVC and SVC, thus ilmplementation would pose no problem for the
addice.

CONCLUOSTIONS

As far as most software is concecned, the use of the YFC poses no problems. In

¥ view, the VFC represents & good, reasonably low-cost attempt to bring the
~.doubted advantages of disk operation to Nascom 2 owners; for someons atacting
up with CP/H, the purchase of a Gemini GM813 or HMAP CPU card and the YFC
cepresents & considerable cost saving on the minimum "all Geminli" system where 3
boards are required. Some useful features available with Gemini's current wvideo
and floppy disk controllers are not found on the VFC but both the extent of
one's purse and the type of application may well be the deciding factors.

The ready=-bullt Full verslon costs £214 + VAT: other versions are about half
this price. In kit form, the full wersion is £175 + VAT and would take a couple
of evenings to build; the video-only and floppy-only versions cost £99 + VAT.
HAF 80 Systems are now in Egham (0784 37674).

Incidentally, if you are contemplating purchasing disk drives, it is possible to
buy TEAC or Hitsubishi drives which are advertised for the BBEC Micro by a number
of firms. You need the double sided 80 track versions with 400k (BEC mode)
capacity which will give s formatted capacity of 784k on an BO-BUS system.
Eﬁveillhﬁupsllari offer good bargains - borrow a Beeb-orientated magarzine and
chec Ehe ads.

Private Advert

FOR SALE

Due to upgrade we have the following for sele. Galaxy 1 with keyboard and
screen. Also Galaxy & Fileserver 10MB with keyboard and screen. Will throw in
mccounts package, Wordstar Multiplan plus Mailmerge F.0.C. Open to all
reasonable offers. RING 0522-38325 (DAY) 0522-735176% (EVENINGS)

43

Putting on the Style by P.D. Coker

One of the more griely aspects of computing is to read some of the glossy
magazines sold for the profit of the publishers and the edification(l) of the
users of plastic box computers. Apart from the ads., the program listings are
eften 80 dreadfully or densely printed in minuscule type that it iz B8 major
business trying either to read them or (worse) type them in. HMulti-statement
lines up to 250 or so characters in length do little for one's understanding of

program logicl

Quite s number of commercially published programs appear to have beeén written in
guch a2 way that only the most dedicated *hacker® will try to disentangle the
program logic - the reason being to discourage the phantom fiddler; such
techniques are to be deplored as are programs which are inadequately documented

or commentad.

There are four basic properties that any computer program should have,
regardless of whether it is toe be offered for sale, placed im the public domain
or used by the originator for his own purposes.

1. It should be logically constructed and portable {i.e. sble to run without a
great deal of modification on many machines}.

Z. It should be easy to follow and well documented.

3, It should work properly, giving correct answers or behaving in the manner
indicated by the author.

4. It should run without excessive demands upon memory or CPU time.

A good program should be constructed so that it is user friendly at all stages;
regrettably, few are. Brown and Sampson (1973) compare a good program with am
amiable, large dog - not easily ruffled, slow to take offense and difficulec to
divert from its chosen course (they don't mention the large appetite of large
dogs - excessive processing time or memory usage, perhaps?). A little unfairly,
they go on to liken most peoples’ efforts at programming to poodles (very
finnicky about their food, demanding only the very best and tastiest tithits,
very quick-tempered, easily upset and generally more trouble than they are
worth). All this is possibly unfair to poodles but does apply to most software
that I have geen (and to a lot I have writtenl}. The worst offenders seem to be
authors of programs in BASIC, closely followed by FORTRAN and PASCAL
practitioners.

Good Design

Many of us, when faced with a problem which needs the attention of & computer,
tend to jump in feet first with a rash of statements in whatever language we
think we are most proficient at using. This isn't the best way except for the
most trivial applications.

Define the problem - what it iz snd the best way to go about it.

Iz a good program already available which will do what you want {or which can be
easily amended for this purpose)? Do you know what you want to do, and how the
computer can help you do it - there is no point in trying to write a database
program if you don't know what a database is. Do you really need to use a
computer or would a few minutes with a calculator serve just as well? If you
can use another’s program, would your date be in an appropriate form or does it
feed prior processing?

Having defined the problem, one should then outline the program, specifying its
purpose, the types of data input and ocutput, the varisbles te be included and
the mathematics which may be needed. At this stage, it should also be possibly

to envisage any exceptional i/o conditions and what should be done to cater for
them - such as numbers out of range, or data in the wrong format. Once this has
been done, one can then look into the development of an algorithm which, amounts
to a well defined and complete series of operations, and will produce the
results which you expect. This isn't the sort of exercise that can be carried
out on the back of an envelopel

Some folk like to use flow charts to help in the production of the algorithm but
the production of & decent flow-chart is not an easy task - most people tend to
become bogged down in program flow to the virtusal exclusion of the program's
function, particularly when dealing with large or complicated programs. It is
difficult to confine some types of flow charts to one piece of paper - no matter
where one starts on a plece of paper, the §7*! chart geems to spread onto
several overspill sheets! An additional problem in flow-charting occurs when
the user is unsure about the amount of detall needed - so that some sections of
m program are dealt with in minute detail while other sections are less
sdequately covered. It is perhaps best to use flow-charts to help sort out
problems associated with parts of programs where difficulty is experienced or
where the logic may be complex but in general, one should lose no sleep if one
cannot draw onel

Program design is important amnd these preliminary steps should not be carried
cut at the keyboard - one should, initially, concentrate om prn&ucing a plan for
a modular program in which each unit containe a manageable number of lines (not
more than, say 30 or 40). It is a good idea to place, say, output routines into
subroutines (such as GOSUBs) rather than In the main part of the program unless
they ere used once only. These subroutines may themselves use other
subroutines, so the importance of a well-structured program becomes apparent.

The best way to achieve this is by & 'top-down' approach in which the main part
of the program is coded and then checked for errors, and the cutlines of the
subroutines established. The next stage consists of coding and checking the
subroutines which the main program calls - eand so on until the program is
complete. This is the ideal situation and progress is often aided by tabulating
the stages within the program; programmers who start with the subroutines and
end up with the main program may run into difficulties. Some work through from
top to bottom in a linear sequence and deserve the problems which they
frequently encounter. Most of us tend to start with the coding of the algorithm
of whatever comprises the heart of the program and to work down to the output
section then up to the inout section. There are fewer snags to this approach
but it is much less efficient than a well-planned top-down approach. It is
always = good plan to keep a copy of the relationship of subroutines to the main
program so that (if necessary) additional subroutines can be included without
the bother of working out the program hierarchy all over again.

Portability

This probably causes more problems than any other sspect of programming in any
language. If you are certain that your program will only be run on a particular
type of machine which uses the same dialect of whatever language you are using -
well, feel free to employ any machine or language implementation-dependencies
that grab you, but dom't expect your program to enjoy wider use unless you stick
to "basic” BASIC or ‘portable’ FORTRAN or PASCAL where non-standard language
extensions, hence non-portability, do not apply.

Thig is true of programs published im this journal - those of ue fortunate
enough to have disks and a copy of disk MBASIC are inclined to forget that
Hascom ROM BASIC is less well endowed with goodies (it's one-third the size).
The fruhlu- becomes most acute when graphics are involved - or when data i/o is
required from particular ports which may have different addresses according to
the manufacturers® whimg. This point is well illustrated by the problems
involved in documenting the port allocations used by B0BUS boards from wvarious
manufacturers - some of whom were not very cooperative (the sags of which
occupied the Editor of B0-Bus Hews in 1983},

47

A useful list of basic BASIC statements and commands is given in Monro (1978).
I don't think that either of the usual PASCALs (Hi-Soft and COMPAS) give any
Indication of which of thelir statements and commands are non-standacd as far as
the IS0 definition is concerned, but Prospero’s Fro-Pascal and ProFortran dao.
It is always a good idea to include in a REM or COMMENT statement, the version
of the language which you have used if it i{s not the ‘portable’ type.

Presentation

This is one bit of program development which is so often skimped. A fabulous
program which has all the bells and whistles one could ever imagine and which
everyone will want to use isn‘t going to inspire much confidence if the listing
is untidy, disorganized or poorly commented. An incompletely commented program
might be all right if it works all the time but what happens if you want to
modify it later and you've forgotten why you put in a particular bit of code.
Are your variable names sensible - it is helpful to use T for the sum of a
geries of numbers and ¥ for the total number of observations - rather than § or
Z for example? Screen or printer output should be helpful - if you want a
regponse to a prompt on the screen, put in a few words to request the input -
such as 'Number of observations'. Similarly, results, whether on the screen or
printer should have some explanation - such as headings for columns.

'Prut:rprinting' is 8 rather "twee' way of expressing the advantage of (for
example) indenting parts of & program listing - it was first used by Nagin and
Ledgard in 1978 as a means of pointing out the advantages (for following program
logic) of various levels of indentation caused by typing spaces before the
statements - thus nested FOR...NEXT loops could be traced very easily if the
second and subsequent loops were indented by 2 or 3 spaces. COMAL does this
sutomatically. A tidy screen or printer display of results is more easily
understood and some ‘prettyprinting® here is achieved by spaces or the use of
tabs or particular print field descriptors. The readability of a listing is
improved by blank comment lines in appropriate places.

Documentation

For many people, particularly those not familiar with a program, adequate
documentation is essentisl, so its provision is a major and often disliked part
of program development. If a program is for your own use, why bother? The
trouble is that one's memory is not faultless and a lot of time and temper can
be wasted. A good example of documentation is that provided with the wvarious
PEN programs - well set out and comprehensible to the average dodo. We all know

of bad examples!

Integrity

In an ideal world, our carefully written, well-documented program would produce
the right results from whatever data we stuffed into it - or it would do in
other ways, what it was designed for. Unfortunately, this is rarely the case
and even after extensive debugging, it may still refuse to function properly. A
program should, once it has been found to be error-free, both in terms of syntax
(confusion of 1 and I, 2 and Z or 0 and O, for example - or the wrong number of
brackets) and the results obtained, be ‘error-trapped' so that an lncorrect or
put-of -range input does not throw it into a state u!iu:t-r confusion so that the
machine crashes or an incorrect result is output. Thie takes a little time to
organise but is well worthwhile. Test data may work perfectly but real data may
produce odd results so one's test data should, where possible, include values
lying at the extremes which are likely to be encountered. Commercial packages
are variable in this crespect - some "throw a wobbly' Lf bad data are encountered
but the majority are designed to cope with this eventuality and allow some user-
intervention to correct the gituation after the package has produced an error
message.

The accuracy of the results cbtained with a computer depends critically upon the
level of precision to which the language implementation does its caleculations -
g0 an engineering program (or any in which tha accuracy of the result had to be
gusrantesd to & large number of significant figures) would need to ba structured
g0 that the largest possible number of significant figures were -nz}nrtd and no
‘rounding off* was applied. This can be achieved by the use of double precision
arithmetic but there is a time and memory penalty for its use. On the other
hand, & simple program to calculate the areas of triangles or to work out
interest payments needs only single precision arithmetic - the default on most
systems - and rounding off may be permissible. The use of built-in ‘'trace’ or
debugging facilities can allow intermediate results to be examined if final
results are not as would be expected. One should not sccept the computer's
resules uncritically.

Eesource efficiency

Two major constraints on most microcomputer users are the amount of directly
addressable memory and the execution time of & program; a large adventurce
program may use most of what is available - this is not usually a problem but
tends to slow things down a bit unless the code is efficiently written. Multi-
statement lines can help economize on memory usage but this should be employed
with care if the legibility of the program is not to suffer. Some maths
programs in which large arrays of data sre processed may use lots of memory and
take a long time to do it. In both cases, the use of memory and time can be
optimized by cutting out unnecessary steps and optimizing where possible. A few
examples may help illustrate this point.

It is quicker to use addition and subtraction rather than multiplication so
X=Y+Y is faster than X=2+Y. Multiplication is faster than division so:

T=1/2 U=X/Z
U=X*T is faster than V=Y/Z
W=ifwT W=AlZ
We=A*T

caponentiation is very slow, particularly when the "power® used is a non-
integer. It is 8 lot gquicker to multiply:

T=X*X*X is quicker than T=X"3 (or T=X**3) and & lot quicker than T=Xt+3.0 which
implies that a non-integer power is used (this does nmot apply to BASIC as far as
1 am aware).

Always use the supplied functioms such as S5QR or SQRT: the results are usually
more accurate and more quickly obtained than if you devise your own version or
use a fractional exponent! If you need to write your own functions (such as TAN
which isn't found in most PASCALs or FORTRANE) do check your verslon uelng
suitable values and paper and pencil.

Inefficient programmers often repeat calculations within the same statement or
loop:

A=B+C-X+4*{B+C)/Y could run faster as two statements:

P=B+C
A=P-X+4*P]Y

Further savings in time can be gained by examining the way in which arrays are
Ecceased. I1f an array element is used several times in a series of
calculations, the walue of the array element can be assigned to a variable and
this variable used in the calculations which follow;

T=X(1.J) A=BvX(I,.J)
d=B* I is better than L=C*X({I.J)
L=C#E

FOR...MEXT or their FORTRAN or PASCAL equivalent D0 loops work faster if
unnecessary arithmetic is reduced - so constants can be placed outside the loop.
It is also quicker to dilg.mua with loops altogether in some cases where, for
example, an array has to initialised.

FOR I=1 TO 3
X(I)=0
NEXT 1

if it is *unrolled' to give the direct assignments:

X(1)=0
X{2)=0
X(3)=0

gince this avoids the work/time overhead sssociaved with loops.

The worst offenders in almost all respects are programs originally written for
painframe computers in which memory restraints are almost own and the clock
speed and cycle time are such that even inefficiently-written programs run
extremely gquickly. Good program#, regardless of their };mctiUn or the language
in which they are written, should take into account most, if not all of the
points raised in this article during their development. The extra time and care
involved will certainly not be wasted)

References

Brown, A.R. and Sampson, W.A. [1973) Program debugging: the prevention and cure
of program errors. MHacdonald.

Monra, D.M. (1978) Basic BASIC., Edward Arnold.

LISTING FOR “HMAKING CP/M MORE USER FRIENDLY - By C. Bowden®

nds

.
-4 b
] I
== ra
: g P . E
o et
E _: - = EL =
e L= b a !
= il =
[] et a ﬂ
— - L L — 4
g 3 = §235, & 5
- [# -
wh - E = k4 § h-s = g h
m ‘= -— s @ -t —
& w [T Loy - L= = *! —
™ L] [o feilh Lo o
= ¥ sa & = TR =
ps - = . L = R - =
o = = o [[= B L] a i . T
= i = o &= (] [=3 T -] ad [- =8
1 el L] b 1" [T e o [T} o "E L] -] L]
: o et . ESdw EO A e FOa
T ¥ Z Em EmE —= T= ir] o
b - — -— [—_ Iw - b # =t
= .ﬁ i [L =& 3 b O =] l— L]
Lk L] L] = = :IE | =] LA A - E] sl
L] o = 3 =E [& s £ L5} = " -—
R =] [] = = o~] -Eu - ol o =] gl =
T - — = | 1] i - = L EI'E
- P e et :Ig.l_ Ll] et ksl a i -t o
= Ix E-3 1] 1] — rw -] = b W L —_ E L] [T 1]
a T 3 " [M T LD = LI
—
o s .E s - T n am m Ew - e A ww n L +a ikl
L] =
o =
a = =
—_—] (=]
= a
— e
! LI - g
i
=1 [-
= - & =] E
] L - - _—
-— - - Lo [
" w e s P =] =
:E - " i - e [y] L= e Bl
= [=T1 el B A - [= me o -.! a L 3 i
o e an [al — [=l [— [T T (-} L] -] = T &t =
[+ & i E = e = - [=] [= ?EH il O sl g gl ot -
=] - — b D —] = E Hﬂ e A RE L aedd e
= - - = uﬁ- Kb Jim =1 - - = - TN TN BT | - e L
; R = - - T — — — - - - o L
= . TR T et Uz —m—= R =SSR 8 L
o -— - - — - — = | — - = o (=1
=] I E ﬂgﬁgdb O T - 4 aTe Ts ERIERATAEaS D8 O 9 Bk
E - - : i) | =A [il L [T | == 3 Ll | W b — — i = L R |
E
i i & - ®
] = " II &= L -, f
=] =] o et el -E i
—— e £l L] g
o h - " .! - — =
.- P —
& me am Lh @ am R mm orw LR -] --S--I-—J- = L] i Ll — L.

50

FEFvsEFENRIEENEERREN

1ad

"1} aAwg e*{Jasana) p|

(183) puedas jag ! JpNpA | €3

1 ARt © B [1+d0%3R3) Py

(mo@) uojaese| 3%44) jeq © ILnpa [|e2
"EARRUY P4O-03 JO5AND JO ! LFEEITT F]
UJRIBJ JBj pummmo> JASSIAT ° ala® P
B34 | |03

253'F p| :JR3ARs
i

BIRALNION L) ,JOSIRD. SSRJPDE JE B0} 3EI0| JOSIRD JUBLIND -;-wm

1
184
Fld3 || ¥#3
Wgz'e ppe
[l |
Fida || €3
uaE'® ppe
u'e py
Fl4d | R
="« ¥ Pl
Bl43 || ™2
Ise"w p| "h?uﬂﬂd

‘L od=] “mouey *Uo|}jS0d JO%sR3 padjsap BujupRIuoa [y ylpm Jajuyl

[1y) o3 Jog4n3 185 !

CIIEPMY IO §IO[3 Byl A
PREN 0|0 SJU PUR SO0 JWW 943 O POPRE SU3M 53U IROSONS QM) 1ESU B4)

D' - 40 J.°W.H.Cdo. QU
Jipua

« 0. G)0p
LA

pajsoddng §36)3 j) Ljuo g, =oysg !

#"le 43303, @430 :Bswdo)
(1l@g ayy punos pue) auj|doy Jo) abessay :

134 :2yue(q

*uanyay abupaawy v uwinjay ! d3%® By iwelg

« 17353 puag
JAS/JA1 19584 OF .

§ 63 JuUMDI JI5EY

Bujbed uesass ajgeus o) 5.

(yp1) pabaepua ja3ue]

(921) pasuapual |aJUE)
[igeg} Jujad [BEJOU JOj H.

pastaadeod L0y 0.
[t} 198 ji pabas|ul (edur)
jujid patsaadeo) 0§ 3.

EEd

s

e

‘puas 03 JaysibBas j agp C ejujlg SYg)

J3jujdd 03 J§ puajg

pRE4 W0y

JUREY JESEY

junas adj| 18%m4 pue Jaju|Jdd abey

Jaqupld sbed Joj 4.

W) U= 353

ya@|3 @y} ayepdp

0. 30U}y dyyg

ayepdn s | jaywQ Joj 0.

FJEMPIEY FID[I U | EUO}I)PUDD SWEY

it i il

R143 | R
17 Pl
Bl42 || ED
53R P
TRuf g Tn o4
Juas da

Inugig 4f
{1yl p

@ Jax
WIET Y pL
prudagpu af
suay da

tawilg 4f
[[edud |3
313°3 pL
j[Eded || EX
JUB3I*3 P
frudayt T um
pia d3

TaugLg 4
raed |3
g3 m
[|eded ||e2
122 p

L TE M Tk FT
23 da

14A% 03 Juas sapoa ay) abuwy)

Iwugq 4F
prwaed ||#3

.u.“ Pl
e fauagd Pl
aﬂum_n__- Pl
[ELTESE R T o
gl 43

1 pua

fwiyg 4F
¥I0| W || ¥
1Euday fre 4
p2 da

L A

Dprufay

iy L LTH

TN

UL

131 8bed

aniaddy

(1]

31

Making CP/M More User Friendly by C. Bowden

This article briefly discusses the software available to improve CP/H and
suggests some simple CBIOS modifications that the user can carrcy out, that will
give additional system flexibility. These modifications apply to CP/M Versiom
-

Only a day or two ago an acgqualntance who is still using NASDOS and POLYDOS
rang me and said '"Youa use CP/M don't you - I have heard that its as friendly as
[expletive deleted] so I don't know whether to upgrade’. My reply was to the
effect that since he was a Hasbus [B0-BUS user, he could progress to what is
probably one of the best implementations of CP/H available.

Certainly, to the average user of microcomputers, the mouse and window
approach as exemplified in the Mackintosh is very attractive and easy to use.
However I think that most readers of thie newsletter are probably more aware of
the inner workings of the machine than the average user, and would find the
relative inaccessibility of the modern machine extremely frustrating.

The MASBUS/BOBUS system is geared to the engineer, scientist or enthusiast
who needs to be able to alter his hirdware systems and assccliated software. The
system may look a little old fashioned when compared with the sleek plastic
machines around now, but it lives on whilst many others fall by the wayside.
The enormous range of available CP/M goftware (and our Investment in it), and
the flexibility of systems like ours make it worthwhile to stay in the 8 bit

world.

Of course standard CP/M is rather unfriendly. It evolved in a world where
TTY terminals, Tape readers and Punches were stlll common. This is still
reflected in software like ED.COM and MBASIC.COM, where the line editing
features are truly as unfriendly as a hungry wolf. Fortunately, it is not
necessary to remain locked in the embraces of standard CP/M. There is a lot of
software around, much of it in the public domain, that can transform CP/M into a
much more sophisticated system, and the various CBIOS's available on Nasbus/80-
BUS systems make system extremely friendly when compared to many other systems.
Above all, it is the "ON SCREEN' EDIT feature, starting back in the good old
NASCOM days, that is so useful.

CP/H consists of three modules, namely the CCP, the BDOS and the BIOS.
These modules are much more fully described im the CP/M manuals, wvarious books

and some of the references in Appendix 2.

The CCP (Console Command Processor) is the part of CP/H that sits showing
the A> prompt and waits for your command. It is 2k bytes long.

The BDOS (Basic Disk Operating System) is the Interface between the CCP or
currently running program and the BIOS. It is 3.5k bytes long.

The BIOS or CBIOS (Customized Baslic Input COuotput System) holds the software
that actually controls the system hardware. The CBIOS therefore varies from
machine to machime. It can be any length up to about &4k Bytes long. Obviously
the longer the CBIOS, the better the system (ought to be) in terms of hardware
gupport and ueer friendliness.

It is not intended to describe in any detail the implementation or
modification of advanced modules, which is usually well described in any
saccompanying documentation, but merely to describe what 18 avallable, and to
indiceate the main features. Readers who wish to obtain & more detailed
understanding of CP/M or modifying it may find some assistance in articles
referred to in Appendix 2

32

Improving the CCP - CCPL/ICPRZ

A number of wvery useful improvements can be made to the CCP. The standard
CCP provides six built In commande {DIR, ERA, REN, BAVE, USER and TYFE). There
is no screen paging support, no 'PATH', and precious little else.

There are two alternstive software replacements for the CCP. The simplest
approach to system improvement is to replace the standard CCP with CCPZ or
earlier versions of ICPR. These programs are virtually the same and are based
on ZCPR in the SIG/H or CP/M User Group Library. ZICPFR literally means Z(80) CCP
Replacement. Since 280 code is um:]ilr more compact than BOBO code, it is
possible to include more in the available 2Zk. The resulting new CCP is
compatible with the standard CCP, and provides all of the standard facilities.
It also provides the following extra features which are more fully described in
the .DOC files provided from the library.

a) Displays the names of ALL files removed by an ERA command.
This can save potentially fatal errors.

b} Provides improved Directory display and S5YS/DIR File options.
A)ll and S)ys options for DIR+5YS or SYS file display. Better directory
formats may be selected for assembly.

c) Optionally displays the current USER number in CP/H prompt.
This is an assembly eption.

d) Opticnally provides screen Fa;iug support for screen cutput.
May be assembled to default to on or off. “P' parameter will toggle
this option. (Mormally off on this system ms BIOS will provide better

paging.)

@) Allows default USER area to be altered, by DFU cosmand. eg: DFU 3
This would mean that the “path' would search USER 3 and not 0. The USER
number may be given in Decimal or Hex. eg: DFU FH.

f1 Provides a GET command to load a file to memory.
Eg: GET B000 MYFILE.COM would load MYFILE.COM in memory at BOOO0H.

g) Provides JUMP and GO commands to operate a TPA resident program.
JUMP will “call® a subroutine. eg: JUMP EQOOH.
GO will call the subroutine at 100H. eg: Restart MBASIC etc. GO is the
same as JUMEF 100H.

hi The SAVE command allows HEX or DECIMAL, PAGES or SECTORS.
eg: SAVE 18 TEST.COM or SAVE 12H TEST.COM to save 18 pages. You may
also give Number of seéctors with 5 parameter. eg: - SAVE 10H
ANOTHER.ONE 5 or SAVE 16 ANOTHER.ONE 5 for B Pages. HN.B. 256 byte

‘page" or 128 byte “sector’.

i} Hore flexible handling of SUBMITS and CCP buffer default Cold Boot
Commands .

j! Provides a LIST command to send a file to the printer.
eg: LIST THISFILE.TXT. The CBIOS will page the printer.

k) Provides a search path for required .COM files.
This is s0o wvseful that it merits a fuller descciption.

With a normal CCP L{f you issue a command like *STAT® then CP/M will look
for STAT.COM on the current drive and USER srea. If the file is not found, CP/M
will give up with a query “STAT?'.

With CCPZ/ICPR & three level search is performed. The CCP will look in the
current user area of the default drive. If the file is not found, user ares 0
of the default disk is searched, If this faile, USER 0 of drive A: is searched.
If the file is still not found, CP/M will give up with the usual query. This

43

feature is extremely useful even on & two floppy system, but is invaluable in
systems with Virtual or Winchester discs. (If the default USER is changed by
the DFU command, the new default USER will be searched instead of USER 0 in the
above example.)

HOTE that CCPZ has been stendard with 2ll Gemini CP/Ms for some time now.
Improving the CCP - ICFRI

A second method of CCP improvement is possible by the use of the more
recent versions of ICPR. In mddition to replacing the CCP, additional memory is
used above CP/M and a considerable system enhancement is obtained. App. 2 Ref.
10 describes the system more fully. I am hoping to try Z2CPE3 in the near
future, but I have not used it yet 50 I can only indicate a few of the features
§ o

Environment Descriptor - Holds information on the ZCPRI system.
Hamed Directories - Allows Drives and USER aress to be named.
Commands -

Resident Command CCP - GO, SAVE, GET, JUMP.

E.C.P. Segment - CP, ERA, TYPE, LIST, PEEK, POKE, PROT, REN.

Flow Control - Allows conditional testing of CCP processing.
Input/Output Package - Routes I/0 and redirects data.

Terminal Descriptor. - Describes the Terminal and its commands.
Five level search PATH. (Easily redefinable)

Wheel Byte - Improves system security.

Drive and USER access via a C6: type command.

Support is provided for security via Passwords.

Large number of support utilities like HELP, MENU, SHOW, UNERASE,
CONFIG., CLEANDIR etc;

One penalty of ZCPRI is that some edditional system memory is needed which
réduces the available TPA by about 4k. If this were a problem with certain
programs, & more standard operating system could be loaded with such programs.

Improving the BDOS - BDOSI

This area of CP/M is the least amenable to modification. However a BDOS
replacement known as BDOSZ is available, and improvements have been incorporated
by using Z80 code to provide extra room for refinements in the 3.5k of space
available. BDOSZ provides the user with much better recovery from errocs than
the standard BDOS. A summary of features that are provided by BDOSZ :-

g} When a “SELECT ERROR' occurs you may enter a valid drive No. and
continue.

b) When a Disk is *R/O" you will be asked DO IT ANYWAY'. If you answer
¥ BOGOSE will reset the disk and proceed.

c) If a "RfO" file is found during ERA, the screen will display the file
name and the same query will be printed. If you answer “Y' the file R/O
flag will be reset, and the ERA carried out. This applies to REN and
SAVE activities as well.

d) If a bad sector is found, a *READ' or "WRITE' error message will be
displayed. °C will cause a Warm Boot, but any other key will cause the
error to be ignored, so that it is possible to recover partly bad files.

@) DISK or DIRECTORY FULL errors. BDOSZI will diﬁ?llr & °"Change Disk
Y/N/~C' option and allows the Disk to be changed Lif desired.

BDOSZ is a worthwhile improvement to CP/M. (N.B. I have found a Bug - see
note in App 1.)

54

Customizing the CBIOE

The CBIOS is the azea where most can be done to make CP/M more user
friendly. I recently bought an Alphatronic PC - A Z80 CP/H machine that was
very well made and selling at a bargain price. I had thought that it would be
useful as a second machine. I kept it for about six months, and then sold it to
& friend who had previously been using a PET. He thinks that it is fabulous, so
why did I sell it 7 (I did put CCPZ onto it.)

Well, I found that I just could not put up with & machine that had no Type
Ahead, no screen dump, no sacreen editing, limited paging (from CCPZ), limited
function key support, no backspace key, changing *case’, and had partly ROH
based BIOS. The supporting utilicies for copying and formatting were not wvery
good either - pretty screen displays, but no verification, no information on
progress, and & bug or two. At least when I sold it it had CCPZ and some public
domain utilities to help. It made me realize just what some people have to put
l.'lp' Hithr

A number of BIOS's are available for the Nasbus/80-BUS machines. I have
used BIOS's by Gemini, Richard Beal (5YS) and MAPB0 Systems. 1 have no
knowledge of Wascom CP/M BIOS's so I cannot comment on them. The three BIOS's
mentioned are all wery good and provide features that are rare, if not unique,
on 8 Bit CP/M machines. Fortunately, MAP and 5Y5S BIOS's come/came with source
code. (Unfortunately 5¥S5 cannot now be purchased, but I bellieve that there are
quite a few about.)

If I can ride one of my hobby-horses here - Whilst I fully understand the
problems of copyright and pirating, I feel that it is & completely retrograde
step to withhold the BIOS source code from system purchasers. The vast majoricy
of users are being penalized for the sake of the odd dishonest person who could
probably be dealt with effectively by the law anyway. I feel that piracy is
being made the excuse for trying to prevent pecple from expanding their systems
except the Gemini way. 5YS5 at one stage included Winchester support, but later
this had to be removed. (Because users didn't need to go to Gemini for a new
BIOS or to buy & Winchester 7) Then 5Y5 itself was withdrawn because of
copyright problems. (See App. 2, Ref &)

The new GMBLY card seems to me to be a similar case in some ways. 1
recently wanted to purchase & spare Disk Controller card for several machines at
work that are in heavy use, and I was annoyed to find that the GHELY card that
supercedes the GHB29 needs version 3.4 of the BIOS to run it. (When the CP/H
was upgraded to Version 3.2 BIOS at work a few months ago there was no mention
that it would not drive the B49 - nor was there a mention of the 849). The CP/M
on the machines in question cannot be sasily replaced dus to special custom
routines, 50 I will have to try to alter the CBIOS to support the 84%. This
sort of work I cam do without.

Logically one would expect that Gemini would want to offer the best BIOS
available, but their BIOS does not include s number of useful features such as
locked EDIT and extended Screen Paging, and without the source code, it is of
course impossible to customize it for additiconal features such as Clock support,
or the type of keyboard feature described later. Neither are MAP products
supported, again denying users of the BUS the most flexible system. Once one is
accustomed to such features, it would be difficult to return to a BIOS without
them. I appreciate that there must be limits to what can be provided as
"COMFIG' options, but I do nmot see that as any reason to deny the users ies
CUSTOMERS, the facility to do their own customizing.

Fortunately I have been able to combine many of the features of 5Y5 with
the HAP CP/M 2.2 BIOS, and then added in some of my own routines to provide
myself with the features that I want. (For personal use only.) Customization
like this takes a lot of time though, and obviocusly would not be possible for
many users, even if the required source codes are available. The restrictive
approach must be denying users the best operating environment, and thus could be
detrimental in the long rcun.

35

Enough of the complaining - If Gemini BIOS 3.x is what you have it is still
8 lot better than most CP/M BIOS"s. If you are fortunate enough to have 5YS518
then you will have everything that you need except possibly Winchester support.
The MAP CP/H BIOS is very good and easily adaptable to different disk types and
formate, including Winchesters, but lacks a few features like screen dump,
screen paging and VBOOT, which can be added anyway.

If you do have the source code of your BIOS available them you may like to
modify it to include some simple but extremely useful keyboard activated
hardware support. The rest of this article will describ# the sort of thing that
I have added to my BIOS.

I first had the idea of providing keyboard support to hardware in order to
cause the printer to advance to top of next page.

In order to permit & direct keyboard command it is necessary to trap and
process the relevant keystrokes instead of pnt:inf thém to CP/M. This means
that it is necessary to meodify the lowest level BIOS routine reading the
keyboard. The "special’ keys must be intercepted and processed and then control
recurned smoothly to CP/M.

The first problem was to find a suitable key for the purpose. After a long
perusal of key allocations I decided to use *T. This choice was based on the
fact that few programs used “T and it could be dispensed with, and also that *T°
was a synonymous with printer T)hrow, The keyboard routine (pkbd: in 5Y5S and
BLINK: in MAP) was accordingly modified so that if “T was typed, the printer
advanced to top of next page, and the BIDS lines per page counter was reset.

It did not take long to realize that I could utilize this method to provide
a numbar of other simple features that could avoid me loosing what little hair I
have left. Due to the shortage of key allocations, I decided to make *T the
lead-in key, and to program the software to expect a second control key
depending on the desired function. This had the advantage of allowing a key to
be chosen, that related to the function to be achieved. In addition, it allowed
the option of sending on a "T to CP/M if desired.

As an aid to the user, a message iz displayed on the locked top line of the
screen whilst the system is walting for the second character, reminding the user
of the options available. After the second character has been typed, this
message is erased. After the routine has been processed, a CR character is
returned to CP/M. This also happens if an erroneous second charscter is typed.
Keyboard software is not noticeably affected since only the first “T is searched
for. Any other character is returned normally to CP/M.

A problem became apparent a while after I added a Real Time Clock to my
BIOS. (I have described this in some detall - see App. 2. Ref 5). Since the
article was published I discovered that if the clock updated during screem EDIT,
or operation of screen oriented software, (eg: Cursor Addressing), the Clock
could interfere with the 'ESC' sequences and corrupt the screen. At first I
solved this problem by disabling the clock or running s BIDOS without the clock.
Since this resulted in incompatibilities in the various CP/M systems, I later
decided to make the clock “passive’ and provide three ways of updating it.

The display now uvpdates on Warm/Cold Boot. On CALL from an external
program. By user initiated demand from the keyboard as described below.

This has eliminated the screen corruption problems referred to above. The
number of functions supported is optional. It is currently limited in my case
by the BIOS size equalling the 4k of BIOS space available on the system track.
I have at present added seven functions as direct keyboard commands. They are

a) °1,”°D - Call clock routines and Update Date and Time display on Locked
top line at Left hand side of the screen.

56

b) °T,"P - Send a Form Feed to printer, causing it to advance to top of
next page, and reset BIOS lines per page count.

Reset IVC/SVC to 80 wide., Useful for the (very) rare time

c) TR
when screen corrupts or gets oot of wertical sync.

d) *T,”N = Ewitch attached (Epson) Printer to Normal Print.
e) °T,"C - Bwitch Printer to Compressed Mode.

£} “T."B REeset Screen Paging flag to 0, to enable paging 1f a "W or

E was issued and a Warm/Cold Boot is undesirable.

g} °T,°T - Pass “T on to calling program.

The listing above, on pages &% and 50, shows in upper case part of the
original BIOS code (HMAP BIOS), and lower case shows the modifications, but note
that the cursor definitions have been moved into CURON/CUROFF to fit in with
other BIOS modifications.

If there is plenty of spare space in the BIOS, quite a number of printer
support features could be incorporated, and even function key redefinitions.

Appendix 1

I have detected a problem with BDOSZ. Recently I have added a Winchester
disk to a Gemini system. Despite the fact that CPF/H Plus is savailable, CP/H 2.2
on the machine in question has been customized extensively along the lines of
thig article and this operating eystem is still preferred for many purposes.
Consequently I needed compatibility between CPfM 2.2 and CP/HM Plus in Winchester
support. I eventually cobbled together a CBIOS with all of the required
features and compatible Disk format by using a couple of MAP CP/M 2.2 BIOS's and
some routines from SYS.

CP/M 2.2 at that stage had CCPZ and BDOSZ in operation. I then found that

.th CP/M 2.2 and CP/M Plus were treasting the floppy drives the same in cespect
of the way the Directory Block allocation was being written, but wrote them
differently to the Winchester. CP/M Plus was putting & 00 byte between block
numbers on the Winnie directory, but CP/M 2.2 was not. After reverting to
standard CP/H 2.2 BDOS the Directory on the Winnle was the same on both vecsions
of CP/H. The 00 byte is not present on the floppy directory under either
operating system but present on the Winnie under both. If anyone knows of a
patch for BDOSZ to make it treat the Winnie properly, I would be pleased to

obtain details.

Appendix 2
Some useful References:
1y Disks and CP/HM I.HN.M.C.B0 HWews Mo. 5
2) Customizing your CBIODS BOBUS Wews. Vol 2, Iss 1
3) 5Y5-Latest Developments BOBUS Mews. Vol 2, Isa 1
&) BYS is dead - long live 7 BOBUS Mews. Vol 2, Iss &
%) CBIOS Real Time Clock BOBUSE Mews. Vol 3, Iss 6
6) CPfH Features & Facilities CPMUG U.E. Vol 1, No 1.
7y The BIOS CPMUG U.E. Vol 1, No 5.
B) The Console Command Processor CPMUG U.KE. Vel 1, No B.
9) IZCPR Replacement CCP CPMUG U.E. Vol 2, No 2.
10) The SE1BD - Software Byte. Oct 19835
11) Soul of CF/M Sams & Co. (U.5.A.)
12) Mastering CP/HM Sybex. (U.5.A.)

13) CP/M manuals. Digital Research.

57

A Sideways Look at Benchmarks by P.D. Coker

A few years ago, PCW published a series of Benchmark programs in BASIC, together
with a list of microz on which they had been run; these were arranged in order
on the basis of their average performance on 8 programs which were designed to
test various features of the machines' versions of BASIC. No Nascom or Gemini
Nasbus[B0-BUS machines were tested although one machine was designed by Gemini
{Himi 801, which did quite well in the tests).

The benchmarks were structured so that for tests 2 - 7, subtracting the timing
for the previous test from the current test time would give the time due to the
routine under examination. The eighth benchmark differed from the rest, which
tested the timings for arithmetic functions., GOSUBs and array handling since it
dealt with transcendental functions such as S5IN, LOG and exponents:

100 REM Benchmark 8 (PCW)
110 PRINT "5"

120 E=0

130 K=K+l

140 A=E"2

150 B=LOG(K)

160 C=SIN(E}

170 IF E<1000 THENW 130
180 PRINT "E*

190 END

I tried this one on the following machines: (CPU and system clock frequency in
brackets)

TE101 (6502, 1MH=z) T2.1 secs
BEC B (6502, ZMH=z) 51.3 secs
Hascom 2 {280, 4&MHz mno FDC) 50.1 secs
SBBC + TORCH 280 2pnd processor 30.8 secs
*Nascom 3 (280, &HMH=z} 53.0 secs
t#iGemini MultiBoard { ") 52.2 #secs
*MAF-BO Systems { ") 51.9 smecs
+HMAP-B0 Systems | 3 0.8 secs

§ Using 280 BBC BASIC and CP/N
* Using MBASIC and CP/M 2.2
4+ Using MBASIC and CP/M 3.0 (CP/H Plus)

I then found that the timing for the standard BBC was 5.1 seconds according to
PCW! Evidently their Beeb was supercharged! More likely, line 170 of the
program had been amended to 'IF K<100 THEN 130" since the average value of 14.6
over the B tests was based on & timing of 51 seconds for mo. 8. Colleagues who
have run this test on other machines mentioned im the PCW list have also
commented wpon fnaccuracies in the reported speads. The 280 wveraion of BBEC
BASIC as used on the TORCH second processor was extremely fast bur disk access
with this system is dreadfully slow. I did not have access to the Acorn §502 or
280 second processors - it would have been interesting to see their timings.

More recently, a series of Benchmarks in PASCAL was produced by the same
megazine; these were 15 in number and designed to take account of the greater
range of features found in this language, but the overall philosophy was the
game, namely, by subtracting the timing for the previous test from the curcent
test time, some idea could be gained of the time for the routine under
investigation. 1 was able to test COMPAS v. 1.08, HP4 and ProPascal v. 2.1
using CP/H 2.2 and CP/M Plus and came to the conclusion that for BM15, which was
a PASCAL version of the BM8 BASIC wersion, HP4 was quite a lot faster than
COMPAS, possibly because it uses 7 rather than 11 significant figure accuracy.
The results were as follows:

38

CP/M 2.2 CP/H 3.0
COMPAS 48.2 mecs &7.1 secs
HP4 B.0 secs 7.9 secs
FroPascal 11.5 secs 11.3 secs

Parkinson (1983) utilized a version of a much more rigorous benchmark while
testing the HS5A-B8E High Speed Arithmetic processor. HNone of the PCW benchmarks
tested the accuracy of the particular langusge/machine combinations using the
intrinsic arithmetic/trigonometrical functions of BASIC or PASCAL, but Parkinson
found an excellent test in Duncan (1983) which provides some interesting
results. The program used is as follows:

5 REM Benchmark from Dr Dobbs' Journal no. 83 (120-122)

10 HI=Z25%00

20 A=l

30 FOR IZ=1 TO NI-1:A=-TAW(ATH(EXP(LOG(SQR(A*A)}}})+1 HEXT II
40 PRIHT USING "A = £££f IELL":A

The purpose of the program is to produce a result as close as possible to 2500
in as short a time as possible. Parkinson produces results using both compiled
and interpreted MBASIC as well as a modified MBASIC, HiSoft HFS Pascal and a
simple assembly language wersion; the last three were run using the HS5A-88B, and
all were run at LMHz.

I used CBASIC, COMAL-80, PASCAL and FORTRAN versions of the program and alseo
tried it out onm a UK101 and & BBC B {both in ite standard version and with the
TORCH 280 processor). The results are shown below, with the MBASIC results for
COmpArison.

MBASIC and Fortran 80 work to 8 digit, ProFortran and ProPascal to 7 digit
accuracy in single precision and respectively, to 17 and 14 digit precision when
in double precision. COMPAS and COMAL have no double precision facility and
work respectively to 11 and 7 digit accuracy. The BBC BASICs (both 6502 and ZB0
versions) use § digit accuracy.

CP/H 2.2 CP/M 3.0
MBASIC (interpreted) 2304.86 in 225 secs 218 secs
. {compiled) 2304.86 in 183 secs

CBASIC (semi-compiled) 2485.76 in 2200 secs*
COMAL-80 (interpreted) 2407.10 in 89 secs

FroFortran {(compiled) 2773.50 in 107 secsgw® 103 secs
Fortram 80 N i 2304.856 in 1B5 secgww 180 secs

COMPAS { = i 2500.00 im 330 secaw* 306 mecs
HE4 i "] 319.67 in 54 secsl 52 secsl
ProPascal | »] 2772.60 in 106 secaw* 102 gecs
BBC B BASIC (interpreted) 2499.69 in 310 secs
BEC ZBOD BASIC (i] 2498.82 in 188 secs
K101 8k Microsoft BASIC 2506.44 in 301 secs

* 14 digit accuracy
** TAN not implemented; user supplied function (5IN/COS)
[I cannot understand this result at all - any offers?

59

Aditionally, I ran Microsoft BASICBS and Digital Research Personmal BASIC (both
interpreted rather than compiled), on a GMBAEB 8/16 bit 8088 co-processor in a
MultiBoard eystem with the Geminl version of CP/M 86. The clock frequency is
8MHz, but according to their catalogue Gemini reckon that with the interaction
with the 4MHz 80-BUS it is more like 6MHz overall; however, the accuracy and
timing of both were somewhat poorl

Time (secs.) Value
BASICEE 130 2179.85
FPersonal BASIC 186 1090.76

I undecrstand that this version of BASICEE (5.21) i the genuine, non-patched
article but the wersion number is exactly the same as my version of HBASIC
{Z80). Its precision would have been improved by using double precision for
variable A, but the timeé penalty would be quite gsevere, The DRI BASIC is an
interesting wersion capable of running MBASIC programs which, in spite of its
poor precision in this application (6 figure accuracy) and its slowness, is a
delight to use.

Incidentally, I was surprised to see that Parkinson appeared not to have tried
COMPAS with the H5A-88B since I would have expected some improvement in

execution time.

Factors affecting Benchmark timings

Several factors will uvltimately affect the timing (and accuracy) of a Benchmark
test.

Hardware

System configuration and architecture will have important effects on disk ijo,
memory and screen access timings. Unless a test is specifically designed to
test these, their usage should be as low as possible.

System clock frequency

The importance of thie is self-evident. A test which is rum at & MHz should
normally complete in & shorter time than one run at 2 MHz unless the language
implementation is less than optimal (as, for example, the patching of the B0BO-
based Microscft languages to run om the Z80 processor).

Sofcware

The use of a compiled language rather than one which is interpreted will always
speed things up and the accuracy will not be affected. The main problem as far
as both accuracy and speed are concerned lies in the efficiency of the
algorithms which are used by the particular version of BASIC or whatever
language, and the exteént to which rounding errors may affect the results of
calculations.

On micros, most BASICs work (in single precision) to an accuracy of 8 digits but
the BBC version uses 9 digits and CBASIC, 14. Rounding errors will be
marginally less ip 9 digie than 8 digit and much less in 14 digit, althoogh the
lgiﬂl penalty may well too great. Some versions of PASCAL and both wversions
of FORTRAN lack a TAM function; this has to be supplied as (SIN/COS), either as
a8 user-supplied function included at compile-time, or possibly as an additional
line of code such as TAN=SIN(A)/COS(A) (which will slow things down rather
less). My FORTRAN tests used the latter approach.

The Z80 wersion of BBC BASIC appears to be a lot faster and only marginally less
accurate than the 6502 version. It is available for 80-BUS machines and it
would certainly seem to be a good buy both in terms of price and facilities

60

since MBASIC is both expensive and long in the tooth. It would be wery
interesting to compare the speed and accuracy of the Microsoft compatible
Mallard BASIC. I understand that it is substantially faster than Hicrosofr,
presumably because it is written in ZB0 rather than 8080 code.

The trigonometric functions produced penalties in all cases in both accuracy
and/or speed. If the program was run without them, the result was very close to
2500 in all but one case (HP&) - with a range of 2499.49 to 2501.03. The
timinge were halved (approximately). HP4 gave a result of 2472.00; rather a
surprising lack of accuracy, attributable in the main to lower precision
aricthmecic.

In this particular application, there is very little access, apart from console
operations, to whatever operating system is in use and one is effectively
comparing the console performances of the CP/M machines. I did try the
FroFascal version of the Dobbs benchmark on & Research Machines 380Z-D; it took
124 secs te complete - about 20 slower than on the BO-BUS machines.

What nowT

It will be fairly obvious that a benchmark test is not the "be-all and end-all®,
neither is it an infallible guide to which language should be used om your
machine. For most non-professiondl users, the question of & second language may
not arise unless they go for HiSoft PASCAL - apd the professional may be usin
applications packages written in one language which are not avallable in any o
the others.

From my own experience, I must say that differences in timing due to
architectural {configuration features smong any of the 80-BUS machines are small,
provided that they are running the same version of CP/M (in my case 2.2). CP/M
3.0 (CP/M PLUS) is available for all B80-BUS machines provided that at least 128k
aof RAM (for its banked memory function) and Gemini or MAP 80 video and Eloppy
disk controllers are available in the system. It is a delight to use and has
many handy facilitles which make it much more versatile than CP/M 2.2. It does
‘nrrease the speed of execution of these Benchmarks & lictle (up to 5 or 6I); im

rmg of real-time applicacions, this gmall saving in time may be worth
congidering. I'malso very glad that I don't have too much to do with CP/N as
used on the BBC/TORCH. It has some nice facilities but it is incredibly slow.
CP/H, for all its snags, is supercharged by comparison!

Ultimately, then, the choice Iis dictated by the application for which you will
be running most of your programs., Few people will want to carry out several
thousand trig. operations but it does imply that a slow performance in the
benchmarks given in this article will be a disadvantage when running programs in
which a lot of use is made of graphics. The same is likely to be true of
pregrams in which there is a significant amount of 'number crunching’, and
accuracy {(or the lack of it) may be a sericus problem.

I haven't yet come across & benchmark which will test the speed of string
handling, and disk i/o tests will depend crucially upon the type of drive,
stepping rate, type of FDC. and such software horrors as the efficiency of the
BDOS code and the way in which data is written to and read from the disk
There's a lot to be said for using a virtual disk or some of the newer 95TPI
drives with 3 ms stepping rates, a great improvement on the Hicropolis® 10 ms
and Pertec's 25 ms. It would appear that the HSA-88BB offers a lot of scope for
increased speed and (possibly) accuracy but coste as much as or more than many
compilers. It would be interesting to see how a 16 bit FORTRAN or PASCAL copes
with the Dobbs Benchmark both with and without the aid of the B087 arithmetic
co-processor that can be added to the GMBBA,

By way of a postscript, the performance of the obsolete UK101l was quite
impressive and supports my feeling that ROM BASICs on 6502 machines tend to be
rather more efficient than either disk or ROM BASICs on the majority of B8080/Z80
machines. I had, some time ago, run the first of the Ern;r:-- mentioned in this
article on a UK10l running at 2 MHz and it pottered through in about 40 seconds.

6l

What was even more surprising was the ability of the 6502 (bog-standard 1MH=z
veérsion) to run at 2MHz. Most 2 MHz Z80s tend to wile if you attempt to run
them at 4 MHz - maybe the device speed selection criteria are more stringent
these days.

I was also quite impressed with COMAL-80's timing - it wae by far the fastest of
the languages tested and its accuracy was pretty reasonable ag well. I've never
understood why COHAL has never ‘caught on' in this country - it's very popular
in Denmark and is fairly easy to get on with.

References

Duncan, R (1983) 16-Bit Software Toolbox. Dr Dobb*s Journal, no.B3
(September 1983}, 120 = 122,

Parkinson, D.W.{1983) Arithmetic Processor Review. 80-BUS News. wol. 2 no. §
(September /October 1983}, 7 - 14.

<EZMiL_WO~R"TH
Computers Limited

19 Talisman Square, Kenilworth, Warwickshire, CV8 1JB
Telephone: {0926) 512348/512127 Telecom Gold- 84:DDS132

Our 8th year of business serving the BO-BUS &
related products!

The reason for this continued success is
dedication to sclving problems rather than selling
boxes.

We have dealership arrangements with ALL known
80-BUS suppliers including:- GEMINI, HASCOM,
MAPB0, IO RESEARCH, EV COMPUTING, MNEWBURN
ELECTRONICS, and of course wa are the suppliers of
the KENILWORTH Portable. The EENILWORTH can be
built exactly to your specification, with a
combination of boards from different suppliers.

USE OUR EXPERTISE FOR:-

* Industrial system design & implementation

» Software in BASIC PASCAL FORTRAN C ASSEMELER
* Total support, hardware & software

* Gemini Challenger, and G68E-BUS

* Gemini MFB2 disc to disc copier

We are probably the last ocutpeost of the Nascom
eampirel ALL upgrade and spare parts are still
available for Nascom 2, Nascom 3, and Lucas LX

computers. We also sell IBM clones for more
mundane tasks!

————NELWMMBURN——/———

NEWBURN ELECTRONICS 58 MANSE ROAD, BALLYCARRY,
Co. ANTRIM BT38 9LF
Tel 09603-78330

HEB71 BO-BUS 32 OPTO-INPUT BOARD. £350
Provides 32 opto isolated inputs to the 80-Bus. 5V to
125V sensitivity. On-board led indication for all 32 inputs.

NEB74 B0-BUS 16 CHANNEL & BIT A/D E2T5
May be configured as 16 balanced or 8 unbalanced + 8
balanced inputs. Input sensitivity between 100mV and 10V.

NEB75 80-BUS 16 CHANNEL 8 BIT D/A £330
Provides 16 analogue voltage outpute 0-10V. Current T
supply on each output up to 40 mA. Short-circuit protection.

NEB76 B0-BUS 64 CHANNEL DIGITAL INPUT £195
Provides 64 digital inputs to 80-bus. Inpute are

protected up to +/=-50V. Any input voltage between =50 and

+50V may be used to switch inputs, threshold is +2V.

NE877 80-BUS 64 CHANNEL DIGITAL OUTPUT E215
Provides 64 digital outputs from the B0-Bus. Each

output is short-circuit protected and capable of output of

50V at 500mA. Ideal for driving relays & lamps etc.

Industrial klippon block can be supplied for direct plant
connections for all the above boards.

NEB40 14 SLOT BACKPLANE EG&T
Correctly terminated for 80-Bus. May be reduced in
size. Supplied complete, less connectors.

GMB33/2M 2 MEGABYTE UPGRADE KIT £290
Expands a standard GM833 (512K) to 2 Megabytes. Mo

changes are required to the standard Gemini bios to support

this board.

The board may be upgraded by us for E350.

CAB02/1M 1 MEGABYTE COSTGOLD UPGRADE KIT £250
Expands a standard Costgold (256K or 128K) board

(CAB56) to 1 Megabyte capacity. No changes are required for

MS-Dos or CP/MB6. The board may be upgraded by us at a total

cost of £E300.

Please add 15% Vat and £4 p/p per order

e NELBURN

I :an“T“IE IT“ T MLDE AN B L SLANG

EV Computing Ltd.

Forthcoming Froducts for 1987

MARNCHESTER s Taa
O=" RTREE LRET . B

== PFID Interfacea boards —--
-=- For Imdustrial contral applications —--

All the below boards cosnect to either the Gemini or Mascom 2§ way FI0 ports. The softwars is

supplisd on disk to ba re-configurable depending on PID port addresses. A lead to plug lato the 26

way PI0 conmectar is provided with all boards.

1f you require mors PIO"s then wee a Hascom I/50 board or a Gemini GHALG. Both glve 3 more FIO"s.

LCD Interface pansl E ¥5.00

Supports Alphaoumeric LCD modoles from 16xl
o d0x2

Saftwars to rum im ROM or umder CEYM supports
noat standard terminal coatrol oodes.

Can replace CP/H console output device

On board bleeper and viewing angle control

LCOs can be supplied from £ 35.040

3 channel ASD canvertor € BOD.DO0

Thres amultiplexed B bit channals with
optional sample & hold

Saftware gupplied will rum wnder CPSH or in
ROM

On board galn & offset trimmers for each
chanaal

On board -5 Yolt convertor allewing AC
aparatlon

Hote: All soltwars sepplied is
whilech must be provided by the ussr.

All prices exclude VAT,

Eeyboard Intecface pansl € 2%.00

Supports matrix type keyboards from 3xd bo
Bx8 ksy locaktions

Software o rum Lo AOM or undar CPAH

Can replace CP/H console input device

EBagy User configurable keyboard typa & layout
Ehift/Control /Function key fsatures

Gavaral atandard configuraclon [iles supplied

Eeypads svailable from £ 5.00 for 6xd matrix

CHOS RAH Fila

E T5:;00/64K; EL?S.00/356K
64K o 256K Babtbtery backed CHOE RAM
Sofrware b0 emulate disk drive ander CPAH ag
well as low level Arilvisng software.
Tesigned to solve industrial storage needs,
aystens available to store gpeto 100 Moyre if
required.

writton onder CP/M and wses the HMED assenbler & LEQ link loader

Flease specify CPAH disk forsat regquired.

CP/M Plus (vers 3)

For NASCOM and Gemini computers

Feanwres:

CPM 2.1 file compatibilty
Banked memory sysiem
Fast warm bool Fram banked memory

Mixed drivaTormals
Full source code of BEIOS
FLUS FLUS PLUS 1=

Now Only £199

Devaluping Systems

Consider our modular approach

Masbua/f) Bus compatible

CPU card
ZBD TPl Tl g
Bile LA oo ol () ¥
ZB0 10 providieg teeo Chakruna s
P10 prowiding j L

-l - ey benard
VIDED card (VFC)

card
Mixed J°, 357, 5.357, & drives supporied
EIIIr::rvﬂd&mnhnu-:nllchlhndh
CTC provideng baod rabas
RAM card
B4l 1o 388k (ir 84l sapa)
Buppans B4k ik
Avadlable i kel o Bull end nemed
CLOCHE card
Anschas 19 &ny PLO
Rataing Camponbes parnisl ourpu
Bariary aclnap
FRICES
CPU MFl
VFC Eibe AN (B4l
RTC [=1.] AN

pmt-:lpn:ﬁqnd‘-lrﬁ'l

MAP 80 Systems Lid
Unit 2 Stoneylands Road, Egham, Surrey

Tel: 0784 37674

